Câu hỏi:

13/07/2024 3,559

Cho điểm M nằm ngoài đường tròn O;R . Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB.

Chứng minh rằng MOAB  tại H.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

MA, MB là các tiếp tuyến của M đến đường tròn  O;R

MA=MB MO là tia phân giác của AMB  (tính chất hai tiếp tuyến cắt nhau)

Do đó MO đồng thời là đường cao của tam giác cân AMB

Suy ra MOAB  tại H.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=m+1x+6  (1) với  m1
Tìm m để khoảng cách từ gốc tọa độ O đến đường thẳng (d) bằng  32.

Xem đáp án » 13/07/2024 13,321

Câu 2:

Cho điểm M nằm ngoài đường tròn O;R . Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB.

Chứng minh rằng bốn điểm M, A, O, B cùng thuộc một đường tròn.

Xem đáp án » 13/07/2024 3,434

Câu 3:

Cho điểm M nằm ngoài đường tròn O;R . Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB.

Kẻ đường kính AD của đường tròn (O), MD cắt đường tròn (O) tại điểm thứ hai là C. Chứng minh rằng MHC=ADC.  

Xem đáp án » 13/07/2024 2,925

Câu 4:

Cho điểm M nằm ngoài đường tròn O;R . Từ M kẻ các tiếp tuyến MA, MB tới đường tròn tâm O (A, B là các tiếp điểm). Gọi H là giao điểm của MO với AB.

Nếu OM=2R hãy tính độ dài MA theo R và số đo các góc AMB,AOB ?

Xem đáp án » 13/07/2024 2,399

Câu 5:

Cho x, y  là các số dương thỏa mãn x2y.  Tìm giá trị nhỏ nhất của biểu thức M với  M=x2+y2xy.

Xem đáp án » 13/07/2024 2,002

Câu 6:

Cho các biểu thức: A=6xx3  B=2xx92x+3  với  x>0;x9.

Tính giá trị của A khi  x=4

Xem đáp án » 13/07/2024 1,529

Bình luận


Bình luận