Câu hỏi:

19/02/2023 1,825 Lưu

Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu S1:x+42+y2+z2=16, S2:x+42+y2+z2=36 và điểm A(4;0;0). Đường thẳng Δ di động nhưng luôn tiếp xúc với (S1), đồng thời cắt (S2) tại hai điểm B,C. Tam giác ABC có thể có diện tích lớn nhất là bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu (S1): (x+4)^2+ y^2+z^2=16 (ảnh 1)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B

Từ đồ thị hàm số y = f'(x), ta thấy:

f'(x)=0x=0x=1x=3,

f'(x)>0x;03;+

f'(x)<0x0;11;3.

Ta có y'=f(x2)'=2x.f'(x2)

y'=0x=0f'(x2)=0x=0x=±1x=±3

f'(x2)>0x2<0x2>3x;33;+

Bảng biến thiên

Cho hàm số y = f(x) có đạo hàm f'(x) xác định trên . Đồ thị hàm số y= f'(x) như hình vẽ dưới đây: (ảnh 2)

Vậy hàm số y=f(x2) có  2 điểm cực tiểu và 1 điểm cực đại.

Câu 2

Lời giải

Chọn đáp án C

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP