Câu hỏi:

19/02/2023 356

Cho hàm số fx=ax3+bx2+cx+d có đồ thị (C) Biết đồ thị (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ dương và đồ thị của hàm số y=f'x như hình vẽ:

Cho hàm số f(x)= ax^3+bx^2+cx+ d có đồ thị (C) Biết đồ thị (C) tiếp xúc (ảnh 1)

Giá trị lớn nhất của hàm số y=fx trên 0;2 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn A

Ta có f'x=kx1x+1=kx21. Lại có f'0=3k=3.

Do đó f'x=3x23fx=x33x+C.

(C) tiếp xúc với đường thẳng y = 4 tại điểm có hoành độ dương khi hệ

phương trình sau có nghiệm x > 0: x33x+C=43x23=0C=2x=1 LoaiC=6x=1 Nhan.

Suy ra fx=x33x+6.

Xét trên 0;2, ta có f'x=0x=1. Mà f0=6f1=4f2=8max0;2fx=8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Trong không gian với hệ tọa độ Oxyz, cho hai điểm A2;1;1,B1;2;1. Tìm tọa độ của điểm A' đối xứng với điểm A qua điểm B?

Lời giải

Chọn B

Điểm A' đối xứng với điểm A qua điểm B nên B là trung điểm của đoạn AA'. Do đó

xA'=2xBxA=4yA'=2yByA=3zA'=2zBzA=1A'4;3;1.

Câu 2

Số nghiệm của phương trình lnx+1+lnx+3=ln9x là

Lời giải

Chọn D

Đkxđ: 1<x<9.

lnx+1+lnx+3=ln9xlnx+1x+3=ln9xx+1x+3=9xx2+5x6=0x=1x=6.

So sánh điều kiện ta thấy x =1 là nghiệm của phương trình.

Vậy phương trình có 1 nghiệm.

Câu 3

Cho a,b,c là các số thực dương khác 1 thỏa mãn logab=6,logcb=3. Khi đó logac bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chóp tứ giác đều S.ABCD có cạnh AB=a và SA=2a. Tính tan của góc giữa đường thẳng SA và mặt phẳng (ABCD).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Số điểm cực trị của hàm số y=x33x2+5 là

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Cho Fx=x2 là một nguyên hàm của hàm số fx.ex. Khi đó f'x.exdx bằng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay