Câu hỏi:

22/02/2023 9,210

Trong không gian Oxyz cho phương trình x2+y2+z2+2m2y2m+3z+3m2+7=0 với m là tham số thực. Có bao nhiêu số tự nhiên m để phương trình đã cho là phương trình của một mặt cầu?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giả sử S:x2+y2+z2+2m2y2m+3z+3m2+7=0 là phương trình mặt cầu.

Khi đó (S) có tâm I0;2m;m+3 và bán kính R=2m2+m+323m27 với điều kiện 

2m2+m+323m27>0m2+2m+6>017<m<1+7.

Do mm0;1;2;3.

Vậy có 4 giá trị m cần tìm.

Chọn A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hàm số nào sau đây là một nguyên hàm của hàm số fx=e2x ?

Xem đáp án » 22/02/2023 23,763

Câu 2:

Cho hai tích phân 25fxdx=8 và 52gxdx=3. Tính I=25fx4gx1dx.

Xem đáp án » 22/02/2023 16,696

Câu 3:

Trong không gian Oxyz cho hai điểm A2;1;0, B0;1;4. Mặt phẳng trung trực của đoạn thẳng AB có phương trình là

Xem đáp án » 22/02/2023 7,945

Câu 4:

Tiệm cận đứng của đồ thị hàm số y=3x+1x2 có phương trình là

Xem đáp án » 22/02/2023 6,798

Câu 5:

Cho khối lăng trụ tam giác có thể tích bằng 12 và diện tích đáy bằng 3. Chiều cao của khối lăng trụ đã cho bằng

Xem đáp án » 22/02/2023 5,697

Câu 6:

Cho khối trụ có bán kính đáy r =3 và chiều cao h=4. Thể tích của khối trụ đã cho bằng

Xem đáp án » 22/02/2023 4,227
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua