Câu hỏi:
13/07/2024 2,101
Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.
Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Do ABCD là hình bình hành nên ta có:
+) (Hai góc ở vị trí so le trong).
+) (Hai góc ở vị trí so le trong).
Xét ∆KOB và ∆HOD có:
(cmt)
OB = OD (gt)
(Hai góc đối đỉnh)
=> ∆KOB = ∆HOD (g.c.g)
=> OK = OH (Hai cạnh tương ứng bằng nhau) (1)
Xét ∆EOA và FOC có:
(cmt)
OA = OC (gt)
(Hai góc đối đỉnh)
=> ∆EOA = ∆FOC (g.c.g)
=> OE = OF (Hai cạnh tương ứng bằng nhau) (2)
Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH và OE = OF.
Suy ra EKFH là hình bình hành.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Do ∆ABC là tam giác vuông tại A nên:
Mặt khác theo định lý Pytago thì:
BC2 = AB2 + AC2
Do đó ta có đpcm.
Lời giải
Gọi 3 số hạng lần lượt là x, x + d, x + 2d (với d là công sai của cấp số cộng).
Do tổng của chúng là 27 nên ta có: x + x + d + x + 2d = 27
<=> 3x + 3d = 27
<=> x + d = 9
<=> d = 9 – x.
Tổng các bình phương của chúng là 293 nên suy ra:
x2 + (x + d)2 + (x + 2d)2 = 293
<=> x2 + (x + 9 − x)2 + (x + 18 − 2x)2 = 293
<=> x2 + 92 + (18 − x)2 = 293
<=> x2 + 81 + 324 − 36x + x2 = 293
<=> 2x2 − 36x + 112 = 0
<=> x2 − 18x + 56 = 0
<=> (x − 14)(x − 4) = 0
• TH1: Với x = 14, d = −5 thì 3 số hạng cần tìm là 14; 9; 4;
• TH2: Với x = 4, d = 5 thì 3 số hạng cần tìm là 4; 9; 14.
Vậy 3 số hạng liên tiếp cần tìm là 4; 9; 14 hoặc 14; 9; 4.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.