Câu hỏi:
13/07/2024 181Cho hình bình hành ABCD. Gọi O là giao điểm 2 đường chéo AC và BD. Qua O vẽ đường thẳng a cắt AD, BC lần lượt tại E, F. Qua O vẽ đường thẳng b cắt AB và CD lần lượt tại K, H. Chứng minh tứ giác EKFH là hình bình hành.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do ABCD là hình bình hành nên ta có:
+) (Hai góc ở vị trí so le trong).
+) (Hai góc ở vị trí so le trong).
Xét ∆KOB và ∆HOD có:
(cmt)
OB = OD (gt)
(Hai góc đối đỉnh)
=> ∆KOB = ∆HOD (g.c.g)
=> OK = OH (Hai cạnh tương ứng bằng nhau) (1)
Xét ∆EOA và ∆FOC có:
(cmt)
OA = OC (gt)
(Hai góc đối đỉnh)
=> ∆EOA = ∆FOC (g.c.g)
=> OE = OF (Hai cạnh tương ứng bằng nhau) (2)
Từ (1) và (2) ta có tứ giác EKFH có hai cặp cạnh đối thỏa mãn OK = OH và OE = OF.
Suy ra EKFH là hình bình hành.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH.
Chứng minh rằng:
Câu 2:
Tìm 3 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng là 27 và tổng các bình phương của chúng là 293.
Câu 3:
Cho hai tập hợp E = (2;5] và F = [2m - 3; 2m + 2]. Tìm tất cả các giá trị của tham số m để E hợp F là một đoạn có độ dài bằng 5.
Câu 4:
c) Tìm m để đường thẳng (d) tạo với 2 trục tọa độ một tam giác có diện tích bằng 3
Câu 5:
Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.
a) Chứng minh tứ giác BDEC nội tiếp.
về câu hỏi!