Câu hỏi:

12/07/2024 888

c) EF cắt CB tại I. CM tam giác AFC đồng dạng với tam giác BFD, suy ra FE là tia phân giác của góc CFD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

c) Ax // By (cùng AB), theo định lí Ta-lét ta có: CEED=CIIB=AFFB

Mà CE = CA và ED = BD

=> AFFB=CABD

Lại có CAF^=FBD^=90°

Do đó ΔAFC ΔBFD (c.g.c) (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh rằng: 1/AH^2 = 1/AB^2 + 1/AC^2 (ảnh 1)

Do ∆ABC là tam giác vuông tại A nên:

SABC=AH.BC2=AB.AC2AH.BC=AB.ACAH=AB.ACBC1AH=BCAB.AC1AH2=BC2AB2.AC2

Mặt khác theo định lý Pytago thì:

BC2 = AB2 + AC2

1AH2=AB2+AC2AB2.AC2=1AB2+1AC2

Do đó ta có đpcm.

Lời giải

Gọi 3 số hạng lần lượt là x, x + d, x + 2d (với d là công sai của cấp số cộng).

Do tổng của chúng là 27 nên ta có: x + x + d + x + 2d = 27

<=> 3x + 3d = 27

<=> x + d = 9

<=> d = 9 – x.

Tổng các bình phương của chúng là 293 nên suy ra:

x2 + (x + d)2 + (x + 2d)2 = 293

<=> x2 + (x + 9 − x)2 + (x + 18 − 2x)2 = 293

<=> x2 + 92 + (18 − x)2 = 293

<=> x2 + 81 + 324 − 36x + x2 = 293

<=> 2x2 − 36x + 112 = 0

<=> x2 − 18x + 56 = 0

<=> (x − 14)(x − 4) = 0

• TH1: Với x = 14, d = −5 thì 3 số hạng cần tìm là 14; 9; 4;

• TH2: Với x = 4, d = 5 thì 3 số hạng cần tìm là 4; 9; 14.

Vậy 3 số hạng liên tiếp cần tìm là 4; 9; 14 hoặc 14; 9; 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP