Câu hỏi:

01/03/2023 821

d) EA cắt CF tại M. EB cắt DF tại N. CM: M, I, N thẳng hàng.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

d) Ta có: CA = CE; OA = OE => OC là đường trung trực của AE

Mà AE EB => OC // EB hay OC // BK

Lại có O là trung điểm của BC

=> C là trung điểm của AK => AC = CK

EF // AK => IECK=BIBC=IFAC

Mà AC = CK => IE = IF

Gọi P = IM Ax; Q = IN By

Ta có: CP // IF => CPIF=MPMI

PA // IE => MPMI=APIE

Mà IE = IF => CP = MP => P là trung điểm của AC.

Chứng minh tương tự ta có Q là trung điểm của BD.

IE // BD => CIIB=CEED=CABD=2CP2QB=CPQB

và PCI^=QBI^

=> ΔPCI ΔQBI (c.g.c)

=> P, I, Q thẳng hàng Þ M, I, N thẳng hàng (đpcm)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh rằng: 1/AH^2 = 1/AB^2 + 1/AC^2 (ảnh 1)

Do ∆ABC là tam giác vuông tại A nên:

SABC=AH.BC2=AB.AC2AH.BC=AB.ACAH=AB.ACBC1AH=BCAB.AC1AH2=BC2AB2.AC2

Mặt khác theo định lý Pytago thì:

BC2 = AB2 + AC2

1AH2=AB2+AC2AB2.AC2=1AB2+1AC2

Do đó ta có đpcm.

Lời giải

Gọi 3 số hạng lần lượt là x, x + d, x + 2d (với d là công sai của cấp số cộng).

Do tổng của chúng là 27 nên ta có: x + x + d + x + 2d = 27

<=> 3x + 3d = 27

<=> x + d = 9

<=> d = 9 – x.

Tổng các bình phương của chúng là 293 nên suy ra:

x2 + (x + d)2 + (x + 2d)2 = 293

<=> x2 + (x + 9 − x)2 + (x + 18 − 2x)2 = 293

<=> x2 + 92 + (18 − x)2 = 293

<=> x2 + 81 + 324 − 36x + x2 = 293

<=> 2x2 − 36x + 112 = 0

<=> x2 − 18x + 56 = 0

<=> (x − 14)(x − 4) = 0

• TH1: Với x = 14, d = −5 thì 3 số hạng cần tìm là 14; 9; 4;

• TH2: Với x = 4, d = 5 thì 3 số hạng cần tìm là 4; 9; 14.

Vậy 3 số hạng liên tiếp cần tìm là 4; 9; 14 hoặc 14; 9; 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP