Câu hỏi:
04/03/2023 632Chọn ngẫu nhiên ba số đôi một khác nhau từ tập hợp {1; 2; 3; ...; 100} gồm 100 số nguyên dương đầu tiên. Tính xác suất để 3 số được chọn là độ dài 3 cạnh của một tam giác.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số phần tử của không gian mẫu là
Ta tính số cách chọn ba phần tử khác nhau của tập hợp A sao cho ba phần tủ nhày là độ dài ba cạnh một tam giác.
Giả sử ba số cần chọn là x < y < z. Khi đó ta phải có x > z − y.
Đặt k = z − y; 1 k 49.
Với k = 1, ta có x {2; 3; …; 98}. Ta xét từng trường hợp như sau:
+ x = 2 các bộ số (y; z) lượt là (3; 4), (4; 5), …, (99; 100) có 97 bộ.
+ x = 3 các bộ số (y; z) lượt là (4; 5), (5; 6), …, (99; 100) có 96 bộ.
…
+ x = 8 chỉ có 1 bộ số (y; z) = (99; 100) thỏa mãn.
Do đó số bộ ba trong trường hợp này là
Với k = 2, ta có x {3; 4; …; 97}. Ta xét từng trường hợp như sau:
+ x = 3 các bộ số (y; z) lượt là (4; 6), (5; 7), …, (98; 100) có 95 bộ.
…
+ x = 97 chỉ có 1 bộ số (y; z) = (98; 100) thỏa mãn.
Như vậy trường hợp này số bộ ba là
Lập luận tương tự đến trường hợp k = 49 thì x = 50 và chỉ có một bộ số (y; z) thỏa mãn là (51; 100).
Vậy số cách chọn bộ ba số thỏa mãn yêu cầu là
Xác suất của biến cố cần tìm là
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH.
Chứng minh rằng:
Câu 2:
Tìm 3 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng là 27 và tổng các bình phương của chúng là 293.
Câu 3:
Cho hai tập hợp E = (2;5] và F = [2m - 3; 2m + 2]. Tìm tất cả các giá trị của tham số m để E hợp F là một đoạn có độ dài bằng 5.
Câu 4:
c) Tìm m để đường thẳng (d) tạo với 2 trục tọa độ một tam giác có diện tích bằng 3
Câu 5:
Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.
a) Chứng minh tứ giác BDEC nội tiếp.
về câu hỏi!