Câu hỏi:
04/03/2023 853Giá trị nào của m để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Ta có
Để I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì trước hết x = −1 là nghiệm của phương trình 3x2 − 6mx − 9 = 0.
<=> 3(−1)2 − 6m(−1) − 9 = 0
<=> 3 + 6m − 9 = 0
<=> m = 1.
Thử lại với m = 1 ta được:
(Cm)
Khi đó với x = −1 ta có y = 6. Vây I(−1; 6) là điểm thuộc đồ thị hàm số.
Lại có
Ta xét BBT:
Dựa vào BBT ta thấy x = −1 là điểm cực địa của đồ thị hàm số
Vậy để điểm I(−1; 6) là điểm cực đại của đồ thị hàm số y = x3 − 3mx2 − 9x + 1 (Cm) thì m = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A có đường cao AH.
Chứng minh rằng:
Câu 2:
Tìm 3 số hạng liên tiếp của một cấp số cộng, biết tổng của chúng là 27 và tổng các bình phương của chúng là 293.
Câu 3:
Cho hai tập hợp E = (2;5] và F = [2m - 3; 2m + 2]. Tìm tất cả các giá trị của tham số m để E hợp F là một đoạn có độ dài bằng 5.
Câu 4:
c) Tìm m để đường thẳng (d) tạo với 2 trục tọa độ một tam giác có diện tích bằng 3
Câu 5:
Cho đường tròn tâm O và BC là dây cung không đi qua tâm. Trên tia đối của tia BC lấy điểm M sao cho M không trùng với B. Đường thẳng đi qua M cắt đường tròn (O) đã cho tại N và P (N nằm giữa M và P) sao cho O nằm trong PMC. Gọi A là điểm chính giữa của cung nhỏ NP. Các dây AB và AC lần lượt cắt NP tại D và E.
a) Chứng minh tứ giác BDEC nội tiếp.
về câu hỏi!