b) Gọi H là giao điểm của MA và BC, K là giao điểm của MD và AB. Chứng minh tứ giác BMHK nội tiếp và HK // CD.
b) Gọi H là giao điểm của MA và BC, K là giao điểm của MD và AB. Chứng minh tứ giác BMHK nội tiếp và HK // CD.
Quảng cáo
Trả lời:
b) Do CD AB (giả thiết)
=> AB là đường trung trực của CD (mối liên hệ giữa đường kính và dây cung)
=> AC = AD (tính chất đường trung trực)
(hai dây bằng nhau căng hai cung bằng nhau)
(góc nội tiếp cùng chắn hai cung bằng nhau)
Mà hai góc này cùng nhìn cạnh KH nên suy ra BMHK nội tiếp.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ∆ABC vuông tại A nên ta có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82 = 100
=> BC = 10 cm.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
AB2 = BA.BC
<=> 62 = BH.10
=> HC = BC − BH = 10 − 3,6 = 6,4 (cm)
Vậy BC = 10 cm, BH = 3,6 cm, HC = 6,4 cm, AH = 4,8 cm.
Lời giải
• Xét phương trình: x2 − mx + m − 1 = 0 (1)
Ta có: ∆ = m2 − 4(m − 1) = m2 − 4m + 4 = (m − 2)2
Để phương trình có hai nghiệm phân biệt thì ∆ > 0
Hay (m − 2)2 > 0 <=> m ≠ 2
Theo hệ thức Vi-ét ta có:
• Xét phương trình: x12 + 3x1x2 = 3x2 + 3m + 16 (2)
+) TH1:
Khi đó phương trình (2) trở thành:
(2) <=> (m − 1)2 + 3(m − 1) = 3 + 3m + 16
<=> m2 − 2m − 21 = 0
+) TH2:
Khi đó phương trình (2) trở thành:
(2) <=> 12 + 3(m − 1) = 3(m − 1) + 3m + 16
<=> 3m + 15 = 0
<=> m = −5.
Vậy và m = −5 là các giá trị của m thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.