Câu hỏi:

12/07/2024 1,046

Cho hàm số: y = x3 − 3mx2 + 9x + 1, có đồ thị (Cm), với m là tham số. Tìm giá trị của tham số m để đường thẳng (dm): y = x + 10 − 3m cắt đồ thị (Cm) tại 3 điểm phân biệt A, B, C. Gọi k1, k2, k3 là hệ số góc tiếp tuyến của (Cm) lần lượt tại A, B, C. Tìm giá trị của m để k1 + k2 + k3 > 15.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

y = x3 − 3mx2 + 9x + 1 => y' = 3x2 − 6mx + 9.

Phương trình hoành độ giao điểm của đồ thị (Cm) và đường thẳng (dm) là:

x3 − 3mx2 + 9x + 1 = x + 10 − 3m

<=> x3 − 3mx2 + 8x + 3m − 9 = 0

<=> (x3 + 8x − 9) − (3mx2 3m) = 0

<=> (x − 1)(x2 + x + 9) − 3m(x − 1)(x + 1) = 0

<=> (x − 1)[x2 + (1 − 3m)x + 9 − 3m] = 0

x=1x2+13mx+93m=0*

Cho A là điểm có hoành độ x1 = 1.

Suy ra hệ số góc tiếp tuyến của (Cm) tại A là k1 = 3.12 − 6m.1 + 9 = 12 − 6m

Để (Cm) cắt đường thẳng (dm) tại 3 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt và khác 1.

Δ=13m2493m>012+13m.1+93m09m2+6m35>0116m0m>53m<73m116m>53m116m<73

Hoành độ của B và C là hai nghiệm của phương trình (*) với theo Vi-ét:

x2+x3=3m1x2x3=93m

Hệ số góc tiếp tuyến của (Cm) tại B, C lần lượt là:

k2 = 3x22 − 6mx2 + 9 và k3 = 3x32 − 6mx3 + 9

Để k1 + k2 + k3 > 15

<=> (12 − 6m) + (3x22 − 6mx2 + 9) + (3x32 − 6mx3 + 9) > 15

<=> 3(x22 + x32) − 6m(x2 + x3) + 30 − 6m > 15

<=> 3[(x2 + x3)2 − 2x2x3] − 6m(x2 + x3) + 30 − 6m > 15

<=> 3[(3m − 1)2 − 2(9 − 3m)] − 6m(3m − 1) + 30 − 6m > 15

<=> 3(9m2 − 6m + 1 − 18 + 6m) − 18m2 + 6m + 30 − 6m > 15

<=> 9m2 > 36 Û m2 > 4

m>2m<2

Kết hợp các điều kiện của m suy ra m;732;+

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm.
a) Tính BC, BH, HC, AH
.

Xem đáp án » 12/07/2024 25,321

Câu 2:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:   Số điểm cực trị của hàm số g(x)  x4[f (x − 1)]2 là: (ảnh 1)

Số điểm cực trị của hàm số g(x) = x4[f (x 1)]2 là:

Xem đáp án » 12/07/2024 11,457

Câu 3:

Chứng minh a2 + b2 + c2 < 2(ab + bc + ca) với mọi số thực a, b, c là độ dài ba cạnh của một tam giác.

Xem đáp án » 12/07/2024 10,864

Câu 4:

c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.

Xem đáp án » 12/07/2024 10,446

Câu 5:

Cho phương trình: x2mx + m − 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3x2 + 3m + 16.

Xem đáp án » 12/07/2024 10,284

Câu 6:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA  BC và OA // BD.

Xem đáp án » 12/07/2024 9,675

Câu 7:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:   Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là: (ảnh 1)

Số điểm cực trị của hàm số g(x) = x2[f (x 1)]4 là:

Xem đáp án » 12/07/2024 8,851

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store