Câu hỏi:
12/07/2024 698d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
d) Ta có:
Suy ra => ∆SOA cân tại S
Lại có SI là đường trung tuyến
Suy ra SI OA => KS OA (5)
Ta có ∆KAS có
AI KS suy ra KI = SI.
Mà OI AI
Suy ra OKAS là hình bình hành (6)
Từ (5) và (6) suy ra AKOS là hình thoi.
Ta có ∆OAB vuông tại A có OA = 2OD = 2R
Vậy
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm.
a) Tính BC, BH, HC, AH .
Câu 2:
Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số g(x) = x4[f (x − 1)]2 là:
Câu 3:
Chứng minh a2 + b2 + c2 < 2(ab + bc + ca) với mọi số thực a, b, c là độ dài ba cạnh của một tam giác.
Câu 4:
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu 5:
Cho phương trình: x2 − mx + m − 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3x2 + 3m + 16.
Câu 6:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA BC và OA // BD.
Câu 7:
Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là:
về câu hỏi!