Câu hỏi:
12/07/2024 1,561
Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc = 30°. Tính diện tích tam giác ABC.
Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc = 30°. Tính diện tích tam giác ABC.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Gọi E là giao điểm của BM và CN.
Ta có công thức đường trung tuyến:
Trong tam giác ABC có: BM CN nên tam giác CEB vuông tại E
=> CE2 + BE2 = BC2
Tam giác ABC có:
a2 = b2 + c2 − 2bc.cos A = 5a2 − 2bc.cos A
Khi đó:
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì ∆ABC vuông tại A nên ta có:
BC2 = AB2 + AC2
=> BC2 = 62 + 82 = 100
=> BC = 10 cm.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
AB2 = BA.BC
<=> 62 = BH.10
=> HC = BC − BH = 10 − 3,6 = 6,4 (cm)
Vậy BC = 10 cm, BH = 3,6 cm, HC = 6,4 cm, AH = 4,8 cm.
Lời giải
• Xét phương trình: x2 − mx + m − 1 = 0 (1)
Ta có: ∆ = m2 − 4(m − 1) = m2 − 4m + 4 = (m − 2)2
Để phương trình có hai nghiệm phân biệt thì ∆ > 0
Hay (m − 2)2 > 0 <=> m ≠ 2
Theo hệ thức Vi-ét ta có:
• Xét phương trình: x12 + 3x1x2 = 3x2 + 3m + 16 (2)
+) TH1:
Khi đó phương trình (2) trở thành:
(2) <=> (m − 1)2 + 3(m − 1) = 3 + 3m + 16
<=> m2 − 2m − 21 = 0
+) TH2:
Khi đó phương trình (2) trở thành:
(2) <=> 12 + 3(m − 1) = 3(m − 1) + 3m + 16
<=> 3m + 15 = 0
<=> m = −5.
Vậy và m = −5 là các giá trị của m thỏa mãn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.