Câu hỏi:

19/08/2025 370 Lưu

b) Chứng minh: MN là tiếp tuyến của đường tròn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

b) Đặt I là trung điểm của OA OI=OA2=2R2=R

Hay OI là bán kính của (O).

Do AMON là hình thoi nên suy ra OA MN tại I.

Hay OI MN tại I.

Mà OI là bán kính của (O) => MN là tiếp tuyến của (O).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho tam giác ABC vuông tại A, đường cao AH, AB  6 cm, AC  8 cm. a) Tính BC, BH, HC, AH . (ảnh 1)

a) Vì ∆ABC vuông tại A nên ta có:

BC2 = AB2 + AC2

=> BC2 = 62 + 82 = 100

=> BC = 10 cm.

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

1AH2=1AB2+1AC21AH2=162+182=25576AH=245=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông, ta có:

AB2 = BA.BC

<=> 62 = BH.10

BH=3610=3,6(cm)

=> HC = BC − BH = 10 − 3,6 = 6,4 (cm)

Vậy BC = 10 cm, BH = 3,6 cm, HC = 6,4 cm, AH = 4,8 cm.

Lời giải

• Xét phương trình: x2mx + m − 1 = 0 (1)

Ta có: ∆ = m2 − 4(m − 1) = m2 − 4m + 4 = (m − 2)2

Để phương trình có hai nghiệm phân biệt thì > 0

Hay (m − 2)2 > 0 <=> m 2

Theo hệ thức Vi-ét ta có:

x1+x2=mx1x2=m1x1=mx2mx2x2=m1x1=mx2x22mx2+m1=0x1=mx2x21x2+1mx21=0x1=mx2x21x2+1m=0x1=mx2x2=1x2=m1x1=m1x2=1x1=1x2=m1

• Xét phương trình: x12 + 3x1x2 = 3x2 + 3m + 16 (2)

+) TH1: x1=m1x2=1

Khi đó phương trình (2) trở thành:

(2) <=> (m − 1)2 + 3(m − 1) = 3 + 3m + 16

<=> m2 − 2m − 21 = 0

m=1+22m=122

+) TH2: x1=1x2=m1

Khi đó phương trình (2) trở thành:

(2) <=> 12 + 3(m − 1) = 3(m − 1) + 3m + 16

<=> 3m + 15 = 0

<=> m = −5.

Vậy m=1±22 và m = −5 là các giá trị của m thỏa mãn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP