Câu hỏi:
13/07/2024 4,805Cho đường thẳng mx + (2 – 3m)y + m – 1= 0 (d)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua.
b) Tìm m để khoảng cách từ gốc O đến đường thẳng (d) lớn nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Gọi I (x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua với điểm m nên ta có: mx0 + (2 – 3m)y0 + m – 1 = 0 \(\forall m\)
⇔ m(x0 – 3y0 + 1) + 2y0 – 1 = 0 \(\forall m\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{1}{2}\end{array} \right.\)
⇔ \(I\left( {\frac{1}{2};\frac{1}{2}} \right)\).
b) Gọi H là hình chiếu vuông góc của O lên đường thẳng (d).
Ta có: OH ≤ OI nên OH lớn nhất bằng OI khi và chỉ khi H ≡ I hay OI ⊥ (d). Đường thẳng qua O có phương trình u = ax do \(I\left( {\frac{1}{2};\frac{1}{2}} \right) \in OI \Rightarrow \frac{1}{2} = \frac{1}{2}a\).
Suy ra a = 1.
Do đó OI: y = x.
Đường thẳng (d) được viết lại như sau:
mx + (2 – 3m)y + m – 1 = 0
⇔ (2 – 3m)y = –mx + 1 – m
• Nếu \(m = \frac{2}{3}\) thì đường thẳng (d): \(x - \frac{1}{2} = 0\) song song với trục Oy nên khoảng cách từ O đến (d) là \(\frac{1}{2}\).
• Nếu \(m \ne \frac{2}{3}\) đường thẳng (d) có thể viết lại \(y = \frac{m}{{3m - 2}}x + \frac{{m - 1}}{{3m - 2}}\).
Điều kiện để (d) vuông góc với OI là: \(\frac{m}{{3m - 2}}.1 = - 1\)
\( \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \frac{1}{2}\).
Khi đó \(OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 2 }}{2}\).
Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cẩu bài toán.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a) Chứng minh rằng OA ⊥ MN.
b) Vẽ đường kính NC. Chứng minh rằng MC // AO.
c) Tính độ dài các cạnh của ∆AMN biết OM = 3 cm, OA = 5 cm.
Câu 6:
về câu hỏi!