Câu hỏi:

13/07/2024 7,263

Cho đường thẳng mx + (2 – 3m)y + m – 1= 0 (d)

a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua.

b) Tìm m để khoảng cách từ gốc O đến đường thẳng (d) lớn nhất.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Gọi I (x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua với điểm m nên ta có: mx0 + (2 – 3m)y0 + m – 1 = 0 \(\forall m\)

m(x0 – 3y­0 + 1) + 2y0 – 1 = 0 \(\forall m\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{1}{2}\end{array} \right.\)

\(I\left( {\frac{1}{2};\frac{1}{2}} \right)\).

b) Gọi H là hình chiếu vuông góc của O lên đường thẳng (d).

Ta có: OH ≤ OI nên OH lớn nhất bằng OI khi và chỉ khi H ≡ I hay OI (d). Đường thẳng qua O có phương trình u = ax do \(I\left( {\frac{1}{2};\frac{1}{2}} \right) \in OI \Rightarrow \frac{1}{2} = \frac{1}{2}a\).

Suy ra a = 1.

Do đó OI: y = x.

Đường thẳng (d) được viết lại như sau:

mx + (2 – 3m)y + m – 1 = 0

(2 – 3m)y = –mx + 1 – m

• Nếu \(m = \frac{2}{3}\) thì đường thẳng (d): \(x - \frac{1}{2} = 0\) song song với trục Oy nên khoảng cách từ O đến (d) là \(\frac{1}{2}\).

• Nếu \(m \ne \frac{2}{3}\) đường thẳng (d) có thể viết lại \(y = \frac{m}{{3m - 2}}x + \frac{{m - 1}}{{3m - 2}}\).

Điều kiện để (d) vuông góc với OI là: \(\frac{m}{{3m - 2}}.1 = - 1\)

\( \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \frac{1}{2}\).

Khi đó \(OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 2 }}{2}\).

Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cẩu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4

Do đó c = 4.

Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3

4a + 2b = −14 (1)

Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3

4a – 2b = −14 (2)

Từ (1) và (2) suy ra a = – 0,25; b = 0.

Khi đó parabol có dạng y = −0,25 . x2 + 4

Điểm A và B có tung độ y = 0

−0,25 . x2 + 4 = 0

x = 4 hoặc x = – 4

Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).

Vậy khoảng cách giữa hai điểm A và B là 8.

Lời giải

Lời giải

Media VietJack

a) Ta có: AN = AM (tính chất tiếp tuyến)

Suy ra ∆AMN cân tại A

Mặt khác, OA là tia phân giác cũng là đường cao

Do đó OA  MN (đpcm).

b) Đặt H là giao điểm của MN và AO.

Ta có MH = HN (OA  MN nên H là trung điểm MN).

Mà CO = CN = R.

Suy ra OH là đường trung bình của ∆MNC.

Do đó OH // MC hay MC // OA (đpcm).

c) Ta có OM = ON = R nên ON = 3 cm.

Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)

Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16 

 AN = \[\sqrt {16} \] = 4 (cm)

Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).

Suy ra 5HN = 4 . 3 = 12  HN = \[\frac{{12}}{5}\] = 2,4 (cm).

Ta có MN = 2HN = 2 . 2,4 = 4,8 (H là trung điểm MN).

Vậy AM = AN = 4 cm; MN = 4,8 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay