Cho đường thẳng mx + (2 – 3m)y + m – 1= 0 (d)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua.
b) Tìm m để khoảng cách từ gốc O đến đường thẳng (d) lớn nhất.
Cho đường thẳng mx + (2 – 3m)y + m – 1= 0 (d)
a) Tìm điểm cố định mà đường thẳng (d) luôn đi qua.
b) Tìm m để khoảng cách từ gốc O đến đường thẳng (d) lớn nhất.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Gọi I (x0; y0) là điểm cố định mà đường thẳng (d) luôn đi qua với điểm m nên ta có: mx0 + (2 – 3m)y0 + m – 1 = 0 \(\forall m\)
⇔ m(x0 – 3y0 + 1) + 2y0 – 1 = 0 \(\forall m\)
\( \Leftrightarrow \left\{ \begin{array}{l}{x_0} - 3{y_0} + 1 = 0\\2{y_0} - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{1}{2}\\{y_0} = \frac{1}{2}\end{array} \right.\)
⇔ \(I\left( {\frac{1}{2};\frac{1}{2}} \right)\).
b) Gọi H là hình chiếu vuông góc của O lên đường thẳng (d).
Ta có: OH ≤ OI nên OH lớn nhất bằng OI khi và chỉ khi H ≡ I hay OI ⊥ (d). Đường thẳng qua O có phương trình u = ax do \(I\left( {\frac{1}{2};\frac{1}{2}} \right) \in OI \Rightarrow \frac{1}{2} = \frac{1}{2}a\).
Suy ra a = 1.
Do đó OI: y = x.
Đường thẳng (d) được viết lại như sau:
mx + (2 – 3m)y + m – 1 = 0
⇔ (2 – 3m)y = –mx + 1 – m
• Nếu \(m = \frac{2}{3}\) thì đường thẳng (d): \(x - \frac{1}{2} = 0\) song song với trục Oy nên khoảng cách từ O đến (d) là \(\frac{1}{2}\).
• Nếu \(m \ne \frac{2}{3}\) đường thẳng (d) có thể viết lại \(y = \frac{m}{{3m - 2}}x + \frac{{m - 1}}{{3m - 2}}\).
Điều kiện để (d) vuông góc với OI là: \(\frac{m}{{3m - 2}}.1 = - 1\)
\( \Leftrightarrow m = 2 - 3m \Leftrightarrow m = \frac{1}{2}\).
Khi đó \(OI = \sqrt {{{\left( {\frac{1}{2}} \right)}^2} + {{\left( {\frac{1}{2}} \right)}^2}} = \frac{{\sqrt 2 }}{2}\).
Vậy \(m = \frac{1}{2}\) thỏa mãn yêu cẩu bài toán.Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4
Do đó c = 4.
Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3
⇔ 4a + 2b = −14 (1)
Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3
⇔ 4a – 2b = −14 (2)
Từ (1) và (2) suy ra a = – 0,25; b = 0.
Khi đó parabol có dạng y = −0,25 . x2 + 4
Điểm A và B có tung độ y = 0
⇔ −0,25 . x2 + 4 = 0
⇔ x = 4 hoặc x = – 4
Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).
Vậy khoảng cách giữa hai điểm A và B là 8.
Lời giải
Lời giải
a) Ta có: AN = AM (tính chất tiếp tuyến)
Suy ra ∆AMN cân tại A
Mặt khác, OA là tia phân giác cũng là đường cao
Do đó OA ⊥ MN (đpcm).
b) Đặt H là giao điểm của MN và AO.
Ta có MH = HN (OA ⊥ MN nên H là trung điểm MN).
Mà CO = CN = R.
Suy ra OH là đường trung bình của ∆MNC.
Do đó OH // MC hay MC // OA (đpcm).
c) Ta có OM = ON = R nên ON = 3 cm.
Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)
Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16
⇒ AN = \[\sqrt {16} \] = 4 (cm)
Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).
Suy ra 5HN = 4 . 3 = 12 ⇒ HN = \[\frac{{12}}{5}\] = 2,4 (cm).
Ta có MN = 2HN = 2 . 2,4 = 4,8 (vì H là trung điểm MN).
Vậy AM = AN = 4 cm; MN = 4,8 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.