Câu hỏi:

13/07/2024 13,847 Lưu

Cho đường tròn tâm O, đường kính AB và điểm C thuộc đường tròn sao cho AC > BC. Qua O vẽ đường thẳng vuông góc với dây AC ở H. Kẻ tiếp tuyến tại A của đường tròn cắt tia OH ở D. BD cắt đường tròn tâm O ở E.

a) Chứng minh HA = HC.
b)
Biết \[\widehat {DCO} = 90^\circ \]. Chứng minh OH . DO = DE . DB.

c) Trên tia đối của EA lấy F sao cho E là trung điểm AF. Từ F vẽ đường thẳng AD vuông góc ở K; KF cắt BC ở M. Chứng minh MK = MF.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì A, C (O); OH AC H là trung điểm của AC HA = HC

Do AH = HC, DO AC DO là đường trung trực của AC

b) Vì \[\widehat {DCO}\] = 90°, CH DO DC2 = DH . DO

Mà ∆DCE ∆DBC (g.g).

Suy ra DE . DB = DC2

Do đó DH . DO = DE . DB.

c) Ta có E là trung điểm AF, H là trung điểm AC là đường trung bình.

tứ giác ADEH nội tiếp do \[\widehat {DEA} = \widehat {DHA} = 90^\circ \].

Lại có \[\widehat {FED} = \widehat {CBA} = \widehat {DOA}\] \[\widehat {DAO} = \widehat {FCE}\] = 90°

Mặt khác: FK // AB \[\widehat {FMC} = \widehat {MBA} = \widehat {FEC}\]

\[\widehat {EMF} + \widehat {EFC}\] = 90° \[\widehat {EFM}\] = 90° EM // AK.

Do đó M là trung điểm của KF (E là trung điểm của AC).

Nguyễn Tuan Anh

Nguyễn Tuan Anh

Sao góc cba lại bằng góc fed

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4

Do đó c = 4.

Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3

4a + 2b = −14 (1)

Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3

4a – 2b = −14 (2)

Từ (1) và (2) suy ra a = – 0,25; b = 0.

Khi đó parabol có dạng y = −0,25 . x2 + 4

Điểm A và B có tung độ y = 0

−0,25 . x2 + 4 = 0

x = 4 hoặc x = – 4

Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).

Vậy khoảng cách giữa hai điểm A và B là 8.

Lời giải

Lời giải

Media VietJack

a) Ta có: AN = AM (tính chất tiếp tuyến)

Suy ra ∆AMN cân tại A

Mặt khác, OA là tia phân giác cũng là đường cao

Do đó OA  MN (đpcm).

b) Đặt H là giao điểm của MN và AO.

Ta có MH = HN (OA  MN nên H là trung điểm MN).

Mà CO = CN = R.

Suy ra OH là đường trung bình của ∆MNC.

Do đó OH // MC hay MC // OA (đpcm).

c) Ta có OM = ON = R nên ON = 3 cm.

Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)

Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16 

 AN = \[\sqrt {16} \] = 4 (cm)

Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).

Suy ra 5HN = 4 . 3 = 12  HN = \[\frac{{12}}{5}\] = 2,4 (cm).

Ta có MN = 2HN = 2 . 2,4 = 4,8 (H là trung điểm MN).

Vậy AM = AN = 4 cm; MN = 4,8 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP