Câu hỏi:
13/07/2024 5,443Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
Ta có \[\widehat {BDC} = \widehat {BEC}\] = 90° (góc nội tiếp chắn nửa đường tròn).
Vì BD và CE là đường cao của ∆ABC mà BD và CE cắt nhau tại H nên H là trực tâm của ∆ABC.
Suy ra AH ⊥ BC hay\[\widehat {AFB} = \widehat {ADB}\]= 90°.
Do đó, đỉnh D, F cùng nhìn A, B dưới góc 90°.
Suy ra tứ giác ABFD nội tiếp ⇒ \[\widehat {ABD} = \widehat {AFD}\] (góc nội tiếp cùng chắn cung AD).
Lại có ∆ADH vuông tại D; M là trung điểm của AH.
⇒ DM là đường trung tuyến ứng cạnh huyền
⇒ DM = AM
⇒ \[\widehat {MAD} = \widehat {MDA}\]
Mà OD = OC nên ∆ODC cân suy ra \[\widehat {OCD} = \widehat {ODC}\]
Do đó \[\widehat {OCD} = \widehat {MAD} = \widehat {MDA} + \widehat {ODC}\].
Do AF⊥BC ⇒ \[\widehat {MAD} + \widehat {ODC} = 90^\circ \]
⇒ \[\widehat {MDA} + \widehat {ODC} = 90^\circ \]⇒ \[\widehat {MDO} = 90^\circ \] ⇒ MD là tiếp tuyến của (O)
⇒ \[\widehat {ABF} + \widehat {MDE}\] (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây chắn cung
ED).
⇒ \[\widehat {AFD} + \widehat {MDE}\] ⇒ MDK ᔕ ∆MFD (g.g).
⇒ \[\frac{{MD}}{{MF}} = \frac{{MK}}{{MD}}\] ⇒ MD2 = MK . MF.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4
Do đó c = 4.
Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3
⇔ 4a + 2b = −14 (1)
Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3
⇔ 4a – 2b = −14 (2)
Từ (1) và (2) suy ra a = – 0,25; b = 0.
Khi đó parabol có dạng y = −0,25 . x2 + 4
Điểm A và B có tung độ y = 0
⇔ −0,25 . x2 + 4 = 0
⇔ x = 4 hoặc x = – 4
Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).
Vậy khoảng cách giữa hai điểm A và B là 8.
Lời giải
Lời giải
a) Ta có: AN = AM (tính chất tiếp tuyến)
Suy ra ∆AMN cân tại A
Mặt khác, OA là tia phân giác cũng là đường cao
Do đó OA ⊥ MN (đpcm).
b) Đặt H là giao điểm của MN và AO.
Ta có MH = HN (OA ⊥ MN nên H là trung điểm MN).
Mà CO = CN = R.
Suy ra OH là đường trung bình của ∆MNC.
Do đó OH // MC hay MC // OA (đpcm).
c) Ta có OM = ON = R nên ON = 3 cm.
Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)
Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16
⇒ AN = \[\sqrt {16} \] = 4 (cm)
Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).
Suy ra 5HN = 4 . 3 = 12 ⇒ HN = \[\frac{{12}}{5}\] = 2,4 (cm).
Ta có MN = 2HN = 2 . 2,4 = 4,8 (vì H là trung điểm MN).
Vậy AM = AN = 4 cm; MN = 4,8 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)