Cho hình bình hành ABCD có BC = 2AB và \[\widehat A = 60^\circ \]. Gọi E, F theo thứ tự là trung điểm của BC và AD.
a) Tứ giác ECDF là hình gì? Vì sao?
b) Tam giác DEC là tam giác gì? Vì sao?
c) Tính số đo\[\widehat {AED}\]?
Cho hình bình hành ABCD có BC = 2AB và \[\widehat A = 60^\circ \]. Gọi E, F theo thứ tự là trung điểm của BC và AD.
a) Tứ giác ECDF là hình gì? Vì sao?
b) Tam giác DEC là tam giác gì? Vì sao?
c) Tính số đo\[\widehat {AED}\]?
Quảng cáo
Trả lời:

Lời giải
a) Ta có \[\left\{ \begin{array}{l}BC = 2AD = 2AB = 2AE = 2FD\\BC = 2BE = 2EC\end{array} \right.\]
Suy ra AB = BE = EC = CD = FD = AF
Tứ giác ECFD có \[\left\{ \begin{array}{l}FD//EC\\FD = EC\end{array} \right.\]
Do đó tứ giác ECFD là hình bình hành.
b) ∆ DEC có: \[\left\{ \begin{array}{l}DC = EC\\\widehat A = \widehat C = 60^\circ \end{array} \right.\] ⇒ ∆ DEC là ∆ đều
c) Ta có: tứ giác ABEF là hình bình hành nên AB // FE ⇒ \[\widehat {AEF} = \widehat {EAB}\] (1)
• Xét ∆AFE có AF = FE nên ∆AFE là tam giác cân.
Do đó \[\widehat {FAE} = \widehat {FEA}\] (2)
Từ (1) và (2) suy ra \[\widehat {BAE} = \widehat {EAF} = \widehat {FEA} = \frac{{60^\circ }}{2} = 30^\circ \].
• Xét ∆FED có \[\left\{ \begin{array}{l}FD = DC = DE\\\widehat {FDE} = 60^\circ \end{array} \right.\] nên ∆FED là tam giác đều.
Suy ra \[\widehat {FDE} = \widehat {DEF} = \widehat {EFD} = \frac{{180^\circ }}{3} = 60^\circ \].
Ta có \[\widehat {AED} = \widehat {AEF} + \widehat {FED} = 30^\circ + 60^\circ = 90^\circ \]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đỉnh G có tọa độ (0; 4) nên a . 02 + b . 0 + c = 4
Do đó c = 4.
Điểm D có tọa độ (2; 3) nên a . 22 + b . 2 + 4 = 3
⇔ 4a + 2b = −14 (1)
Điểm C có tọa độ (–2; 3) nên a . (−2)2 + b . (−2) + 4 = 3
⇔ 4a – 2b = −14 (2)
Từ (1) và (2) suy ra a = – 0,25; b = 0.
Khi đó parabol có dạng y = −0,25 . x2 + 4
Điểm A và B có tung độ y = 0
⇔ −0,25 . x2 + 4 = 0
⇔ x = 4 hoặc x = – 4
Suy ra điểm B có tọa độ (4; 0) và điểm A có tọa độ (– 4; 0).
Vậy khoảng cách giữa hai điểm A và B là 8.
Lời giải
Lời giải
a) Ta có: AN = AM (tính chất tiếp tuyến)
Suy ra ∆AMN cân tại A
Mặt khác, OA là tia phân giác cũng là đường cao
Do đó OA ⊥ MN (đpcm).
b) Đặt H là giao điểm của MN và AO.
Ta có MH = HN (OA ⊥ MN nên H là trung điểm MN).
Mà CO = CN = R.
Suy ra OH là đường trung bình của ∆MNC.
Do đó OH // MC hay MC // OA (đpcm).
c) Ta có OM = ON = R nên ON = 3 cm.
Ta có: ON2 + AN2 = AO2 (theo định lý Py-ta-go)
Suy ra AN2 = AO2 – ON2 = 52 – 32 = 25 – 9 = 16
⇒ AN = \[\sqrt {16} \] = 4 (cm)
Ta có: AO.HN = AN.NO (hệ thức lượng trong tam giác vuông).
Suy ra 5HN = 4 . 3 = 12 ⇒ HN = \[\frac{{12}}{5}\] = 2,4 (cm).
Ta có MN = 2HN = 2 . 2,4 = 4,8 (vì H là trung điểm MN).
Vậy AM = AN = 4 cm; MN = 4,8 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.