Câu hỏi:
13/07/2024 489Cho số thực x, y thỏa mãn: \[x - \sqrt {x + 6} = \sqrt {y + 6} - y\].
Tìm giá trị lớn nhất và giá trị nhỏ nhất của P = x + y.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
• Ta có x + y = \[\sqrt {x + 6} + \sqrt {x + 6} \] ≥ 0 ⇒ x + y ≥ 0
\[x + y = \sqrt {x + 6} + \sqrt {y + 6} \le \sqrt {2\left( {x + y + 12} \right)} \]
\[ \Rightarrow {\left( {x + y} \right)^2} \le 2\left( {x + y + 12} \right)\]
\[ \Rightarrow (x + y + 4)(x + y - 6) \le 0\]
x + y ≤6 (do x + y + 4 > 0)
Do đó Pmax = 6 khi x = y = 3
• Lại có \[x + y = \sqrt {x + 6} + \sqrt {y + 6} \]
\[ \Rightarrow {(x + y)^2} = x + y + 12 + 2\sqrt {(x + 6)(y + 6)} \ge x + y + 12\]
\[ \Rightarrow {(x + y)^2} - (x + y) - 12 \ge 0\]
\[ \Rightarrow (x + y + 3)(x + y - 4) \ge 0\]
\[ \Rightarrow x + y - 4 \ge 0\]
\[ \Rightarrow x + y \ge 4\]
Pmin = 4 khi (x; y) = (–6; 10) và hoán vị.
Vậy giá trị lớn nhất của biểu thức P bằng 6 khi x = y = 3 và giá trị nhỏ nhất bằng 4 khi (x; y) = (–6; 10) và hoán vị.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 5:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AM, AN với đường tròn (M, N là các tiếp điểm).
a) Chứng minh rằng OA ⊥ MN.
b) Vẽ đường kính NC. Chứng minh rằng MC // AO.
c) Tính độ dài các cạnh của ∆AMN biết OM = 3 cm, OA = 5 cm.
Câu 6:
Câu 7:
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = \[ - \frac{1}{2}\]x2 và đường thẳng (d) y = mx + m – 3(với m là tham số).
a) Khi m = –1, tìm tọa độ giao điểm của đường thẳng (d) và parabol (P).
b) Tìm m để đường thẳng (d) và parabol (P)cắt nhau tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn hệ thức x12 + x22 = 14.
về câu hỏi!