Câu hỏi:

22/03/2023 20,840

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: D

Media VietJack

Gọi O là tâm của hình thoi ABCD, H là trọng tâm của tam giác ABD.

Tam giác ABD có: AB = AD (do ABCD là hình thoi) và \[\widehat {BAD} = 60^\circ \] (giả thiết).

Suy ra tam giác ABD đều.

Do đó H là tâm đường tròn ngoại tiếp tam giác ABD.

Mà hình chóp S.ABD có SA = SB = SD = a (giả thiết).

Suy ra SH (ABD).

Ta có \(\widehat {ADC} = 180^\circ - \widehat {BAD} = 180^\circ - 60^\circ = 120^\circ \).

Khi đó \(\widehat {ODC} = \widehat {ADO} = \frac{{\widehat {ADC}}}{2} = \frac{{120^\circ }}{2} = 60^\circ \) (do ABCD là hình thoi nên DO là tia phân giác của \(\widehat {ADC}\)).

Vì vậy \(\widehat {HDO} = \frac{{\widehat {ADO}}}{2} = \frac{{60^\circ }}{2} = 30^\circ \) (do ∆ABD đều có H là trọng tâm nên DH là đường phân giác của ∆ABD).

Ta có \(\widehat {HDC} = \widehat {HDO} + \widehat {ODC} = 30^\circ + 60^\circ = 90^\circ \).

Suy ra HD CD.

Trong (SAC): dựng HK // SA (K SC).

Trong (SHD): dựng HI SD (I SD).

Mà HD CD (chứng minh trên).

Suy ra CD (SHD).

Do đó CD HI.

Vì vậy HI (SCD).

Ta có I, K lần lượt là hình chiếu vuông góc của H, K lên (SCD).

Do đó KI là hình chiếu vuông góc của HK lên (SCD).

Vì vậy (SA; (SCD)) = (HK; (SCD)) = (HK; KI) = \(\widehat {HKI}\).

Ta có HK // SA. Áp dụng định lí Thalet, ta được \(\frac{{HK}}{{SA}} = \frac{{HC}}{{AC}} = \frac{2}{3}\).

Suy ra \(HK = \frac{{2a}}{3}\).

Ta có:

\(HD = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\);

\(AH = \frac{2}{3}OA = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\);

\(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {{a^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\).

Tam giác SHD vuông tại H có HI là đường cao:

\[\frac{1}{{H{I^2}}} = \frac{1}{{S{H^2}}} + \frac{1}{{H{D^2}}} = \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{3}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}}} = \frac{9}{{2{a^2}}}\].

Suy ra \(H{I^2} = \frac{{2{a^2}}}{9}\).

Do đó \(HI = \frac{{a\sqrt 2 }}{3}\).

Tam giác HIK vuông tại I: \(\sin \widehat {HKI} = \frac{{HI}}{{HK}} = \frac{{\frac{{a\sqrt 2 }}{3}}}{{\frac{{2a}}{3}}} = \frac{{\sqrt 2 }}{2}\).

Suy ra \(\widehat {HKI} = 45^\circ \).

Vậy góc giữa đường thẳng SA và mặt phẳng (SCD) bằng 45°.

Do đó ta chọn phương án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 19,494

Câu 2:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 18,062

Câu 3:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 16,620

Câu 4:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 15,724

Câu 5:

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Xem đáp án » 13/07/2024 15,362

Câu 6:

Một bồn nước inox có dạng một hình trụ có chiều cao 1,75 m và diện tích đáy là 0,32 m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (Bỏ qua bề dày của bồn nước).

Xem đáp án » 21/03/2023 12,725
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay