Câu hỏi:

13/07/2024 15,496

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tam giác ABD có: AB = AD (do ABCD là hình thoi) và \[\widehat {BAD} = 60^\circ \] (giả thiết).

Suy ra tam giác ABD đều.

Lại có SA = SB = SD = a.

Suy ra hình chóp S.ABD là hình chóp đều.

Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.

Suy ra SH (ABD).

Gọi O là giao điểm của AC và BD.

Khi đó \(AO = \frac{{AD\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)\(AH = \frac{2}{3}AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

Tam giác SHA vuông tại H, có: \(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {15} }}{6}\).

Do đó d(S, (ABCD)) = SH = \(\frac{{a\sqrt {15} }}{6}\).

Ta có \(CH = CO + OH = AO + \frac{1}{3}AO = \frac{4}{3}AO = \frac{4}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\).

Tam giác SHC vuông tại H, có: \(SC = \sqrt {S{H^2} + H{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt {15} }}{6}} \right)}^2} + {{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 7 }}{2}\).

Vậy d(S, (ABCD)) = \(\frac{{a\sqrt {15} }}{6}\)\(SC = \frac{{a\sqrt 7 }}{2}\).

b) Ta có: \(\left\{ \begin{array}{l}SH \bot \left( {ABCD} \right)\\SH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\).

c) Ta có H là tâm đường tròn ngoại tiếp tam giác ABD.

Suy ra BH AD.

Lại có SH AD (vì SH (ABD)).

Suy ra AD (SBH).

Mà BC // AD (do ABCD là hình thoi).

Nên BC (SBH).

Vậy BC SB.

d) Ta có: \(\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\\Trong\,\,\left( {SBD} \right):\,\,SO \bot BD\\Trong\,\,\left( {ABCD} \right):\,\,AO \bot BD\end{array} \right.\)

\( \Rightarrow \) Góc giữa hai mặt phẳng (SBD) và (ABCD) là \(\widehat {SOA} = \varphi \).

Tam giác SHO vuông tại H: \(\tan \varphi = \frac{{SH}}{{OH}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.AO}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.\frac{{a\sqrt 3 }}{2}}} = \sqrt 5 \).

Vậy \(\tan \varphi = \sqrt 5 \).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 21,035

Câu 2:

Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:

a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).

b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.

Xem đáp án » 13/07/2024 19,527

Câu 3:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 13/07/2024 18,249

Câu 4:

Cho hai điểm A(3; –5), B(1; 0).

a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].

b) Tìm điểm D đối xứng của A qua C.

c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.

Xem đáp án » 13/07/2024 16,649

Câu 5:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.

a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).

b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).

Xem đáp án » 13/07/2024 15,739

Câu 6:

Một bồn nước inox có dạng một hình trụ có chiều cao 1,75 m và diện tích đáy là 0,32 m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (Bỏ qua bề dày của bồn nước).

Xem đáp án » 21/03/2023 13,207
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay