Câu hỏi:

22/03/2023 1,561

Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \)\(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).

a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.

b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).

c) Chứng minh SB vuông góc với BC.

d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Tam giác ABD có: AB = AD (do ABCD là hình thoi) và \[\widehat {BAD} = 60^\circ \] (giả thiết).

Suy ra tam giác ABD đều.

Lại có SA = SB = SD = a.

Suy ra hình chóp S.ABD là hình chóp đều.

Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.

Suy ra SH (ABD).

Gọi O là giao điểm của AC và BD.

Khi đó \(AO = \frac{{AD\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\)\(AH = \frac{2}{3}AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).

Tam giác SHA vuông tại H, có: \(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {15} }}{6}\).

Do đó d(S, (ABCD)) = SH = \(\frac{{a\sqrt {15} }}{6}\).

Ta có \(CH = CO + OH = AO + \frac{1}{3}AO = \frac{4}{3}AO = \frac{4}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\).

Tam giác SHC vuông tại H, có: \(SC = \sqrt {S{H^2} + H{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt {15} }}{6}} \right)}^2} + {{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 7 }}{2}\).

Vậy d(S, (ABCD)) = \(\frac{{a\sqrt {15} }}{6}\)\(SC = \frac{{a\sqrt 7 }}{2}\).

b) Ta có: \(\left\{ \begin{array}{l}SH \bot \left( {ABCD} \right)\\SH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\).

c) Ta có H là tâm đường tròn ngoại tiếp tam giác ABD.

Suy ra BH AD.

Lại có SH AD (vì SH (ABD)).

Suy ra AD (SBH).

Mà BC // AD (do ABCD là hình thoi).

Nên BC (SBH).

Vậy BC SB.

d) Ta có: \(\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\\Trong\,\,\left( {SBD} \right):\,\,SO \bot BD\\Trong\,\,\left( {ABCD} \right):\,\,AO \bot BD\end{array} \right.\)

\( \Rightarrow \) Góc giữa hai mặt phẳng (SBD) và (ABCD) là \(\widehat {SOA} = \varphi \).

Tam giác SHO vuông tại H: \(\tan \varphi = \frac{{SH}}{{OH}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.AO}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.\frac{{a\sqrt 3 }}{2}}} = \sqrt 5 \).

Vậy \(\tan \varphi = \sqrt 5 \).

Gói VIP thi online tại VietJack (chỉ 200k/1 năm học), luyện tập gần 1 triệu câu hỏi có đáp án chi tiết.

Nâng cấp VIP

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Đổi: 4 giờ 30 phút = … giờ.

Xem đáp án » 21/03/2023 2,616

Câu 2:

Cho hình chóp S.ABCD có đáy là hình thoi cạnh a, SA = SB = SD = a, \[\widehat {BAD} = 60^\circ \]. Góc giữa đường thẳng SA và mặt phẳng (SCD) bằng

Xem đáp án » 22/03/2023 1,051

Câu 3:

Cho đường tròn (O), đường kính AB. Trên tia tiếp tuyến Ax của đường tròn lấy điểm M (M ≠ A), từ M vẽ tiếp tuyến thứ hai MC với đường tròn (O) (C là tiếp điểm). Kẻ CH vuông góc với AB (H AB). MB cắt đường tròn (O) tại điểm Q (Q ≠ B) và cắt CH tại N. Gọi I là giao điểm của MO và AC.

a) Chứng minh AIQM là tứ giác nội tiếp.

b) Chứng minh OM // BC.

c) Chứng minh tỉ số \(\frac{{CH}}{{CN}}\) không đổi khi M di động trên tia Ax (M ≠ A).

Xem đáp án » 21/03/2023 962

Câu 4:

Cho đường tròn (O; R), đường kính AB và tiếp tuyến Ax. Từ điểm C thuộc Ax, kẻ tiếp tuyến thứ hai CD với đường tròn (O) (D là tiếp điểm). Gọi giao điểm của CO và AD là I.

a) Chứng minh: CO AD.

b) Gọi giao điểm của CB và đường tròn (O) là E (E ≠ B). Chứng minh CE.CB = CI.CO.

c) Chứng minh: Trực tâm H của tam giác CAD di động trên đường cố định khi điểm C di chuyển trên Ax.

Xem đáp án » 21/03/2023 745

Câu 5:

Từ điểm I nằm ngoài đường tròn (O), vẽ cát tuyến cắt đường tròn tại A và B (IA < IB). Các tiếp tuyến tại A và B cắt nhau tại M. OM cắt AB tại K.

a) Chứng minh K là trung điểm của AB.

b) Vẽ MH OI tại H. Chứng minh OB2 = OH.OI.

c) Gọi N là giao điểm của AB và MH. Chứng minh IA.IB = IK.IN.

Xem đáp án » 21/03/2023 590

Câu 6:

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

Xem đáp án » 21/03/2023 465

Bình luận


Bình luận

TÀI LIỆU VIP VIETJACK