Câu hỏi:
13/07/2024 8,300Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \) và \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Tam giác ABD có: AB = AD (do ABCD là hình thoi) và \[\widehat {BAD} = 60^\circ \] (giả thiết).
Suy ra tam giác ABD đều.
Lại có SA = SB = SD = a.
Suy ra hình chóp S.ABD là hình chóp đều.
Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.
Suy ra SH ⊥ (ABD).
Gọi O là giao điểm của AC và BD.
Khi đó \(AO = \frac{{AD\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\) và \(AH = \frac{2}{3}AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).
Tam giác SHA vuông tại H, có: \(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {15} }}{6}\).
Do đó d(S, (ABCD)) = SH = \(\frac{{a\sqrt {15} }}{6}\).
Ta có \(CH = CO + OH = AO + \frac{1}{3}AO = \frac{4}{3}AO = \frac{4}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\).
Tam giác SHC vuông tại H, có: \(SC = \sqrt {S{H^2} + H{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt {15} }}{6}} \right)}^2} + {{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 7 }}{2}\).
Vậy d(S, (ABCD)) = \(\frac{{a\sqrt {15} }}{6}\) và \(SC = \frac{{a\sqrt 7 }}{2}\).
b) Ta có: \(\left\{ \begin{array}{l}SH \bot \left( {ABCD} \right)\\SH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\).
c) Ta có H là tâm đường tròn ngoại tiếp tam giác ABD.
Suy ra BH ⊥ AD.
Lại có SH ⊥ AD (vì SH ⊥ (ABD)).
Suy ra AD ⊥ (SBH).
Mà BC // AD (do ABCD là hình thoi).
Nên BC ⊥ (SBH).
Vậy BC ⊥ SB.
d) Ta có: \(\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\\Trong\,\,\left( {SBD} \right):\,\,SO \bot BD\\Trong\,\,\left( {ABCD} \right):\,\,AO \bot BD\end{array} \right.\)
\( \Rightarrow \) Góc giữa hai mặt phẳng (SBD) và (ABCD) là \(\widehat {SOA} = \varphi \).
Tam giác SHO vuông tại H: \(\tan \varphi = \frac{{SH}}{{OH}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.AO}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.\frac{{a\sqrt 3 }}{2}}} = \sqrt 5 \).
Vậy \(\tan \varphi = \sqrt 5 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:
a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).
b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).
b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).
Câu 4:
Cho hai điểm A(3; –5), B(1; 0).
a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].
b) Tìm điểm D đối xứng của A qua C.
c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
Câu 5:
Câu 6:
Cho tam giác ABC, trên các đường thẳng BC, AC, AB lần lượt lấy các điểm M, N, P sao cho \(\overrightarrow {MB} = 3\overrightarrow {MC} ;\,\overrightarrow {NA} = 3\overrightarrow {CN} ;\,\overrightarrow {PA} + \overrightarrow {PB} = \vec 0\).
a) \(\overrightarrow {PM} ,\,\overrightarrow {PN} \) theo \(\overrightarrow {AB} ,\,\overrightarrow {AC} \).
b) Chứng minh M, N, P thẳng hàng.
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
200 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số nâng cao (P1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
về câu hỏi!