Câu hỏi:
13/07/2024 15,496Cho hình chóp S.ABCD có đáy là hình thoi ABCD cạnh a, có \(\widehat {BAD} = 60^\circ \) và \(SA = SB = SD = \frac{{a\sqrt 3 }}{2}\).
a) Tính khoảng cách từ S đến mặt phẳng (ABCD) và độ dài cạnh SC.
b) Chứng minh mặt phẳng (SAC) vuông góc với mặt phẳng (ABCD).
c) Chứng minh SB vuông góc với BC.
d) Gọi φ là góc giữa hai mặt phẳng (SBD) và (ABCD). Tính tanφ.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Tam giác ABD có: AB = AD (do ABCD là hình thoi) và \[\widehat {BAD} = 60^\circ \] (giả thiết).
Suy ra tam giác ABD đều.
Lại có SA = SB = SD = a.
Suy ra hình chóp S.ABD là hình chóp đều.
Gọi H là tâm đường tròn ngoại tiếp tam giác ABD.
Suy ra SH ⊥ (ABD).
Gọi O là giao điểm của AC và BD.
Khi đó \(AO = \frac{{AD\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{2}\) và \(AH = \frac{2}{3}AO = \frac{2}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{a\sqrt 3 }}{3}\).
Tam giác SHA vuông tại H, có: \(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt {15} }}{6}\).
Do đó d(S, (ABCD)) = SH = \(\frac{{a\sqrt {15} }}{6}\).
Ta có \(CH = CO + OH = AO + \frac{1}{3}AO = \frac{4}{3}AO = \frac{4}{3}.\frac{{a\sqrt 3 }}{2} = \frac{{2a\sqrt 3 }}{3}\).
Tam giác SHC vuông tại H, có: \(SC = \sqrt {S{H^2} + H{C^2}} = \sqrt {{{\left( {\frac{{a\sqrt {15} }}{6}} \right)}^2} + {{\left( {\frac{{2a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 7 }}{2}\).
Vậy d(S, (ABCD)) = \(\frac{{a\sqrt {15} }}{6}\) và \(SC = \frac{{a\sqrt 7 }}{2}\).
b) Ta có: \(\left\{ \begin{array}{l}SH \bot \left( {ABCD} \right)\\SH \subset \left( {SAC} \right)\end{array} \right. \Rightarrow \left( {SAC} \right) \bot \left( {ABCD} \right)\).
c) Ta có H là tâm đường tròn ngoại tiếp tam giác ABD.
Suy ra BH ⊥ AD.
Lại có SH ⊥ AD (vì SH ⊥ (ABD)).
Suy ra AD ⊥ (SBH).
Mà BC // AD (do ABCD là hình thoi).
Nên BC ⊥ (SBH).
Vậy BC ⊥ SB.
d) Ta có: \(\left\{ \begin{array}{l}\left( {SBD} \right) \cap \left( {ABCD} \right) = BD\\Trong\,\,\left( {SBD} \right):\,\,SO \bot BD\\Trong\,\,\left( {ABCD} \right):\,\,AO \bot BD\end{array} \right.\)
\( \Rightarrow \) Góc giữa hai mặt phẳng (SBD) và (ABCD) là \(\widehat {SOA} = \varphi \).
Tam giác SHO vuông tại H: \(\tan \varphi = \frac{{SH}}{{OH}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.AO}} = \frac{{\frac{{a\sqrt {15} }}{6}}}{{\frac{1}{3}.\frac{{a\sqrt 3 }}{2}}} = \sqrt 5 \).
Vậy \(\tan \varphi = \sqrt 5 \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho tam giác ABC. Gọi H là điểm đối xứng với B qua G với G là trọng tâm tam giác. Chứng minh:
a) \(\overrightarrow {AH} = \frac{2}{3}\overrightarrow {AC} - \frac{1}{3}\overrightarrow {AB} ;\,\overrightarrow {CH} = - \frac{1}{3}\overrightarrow {AB} - \frac{1}{3}\overrightarrow {AC} \).
b) \(\overrightarrow {MH} = \frac{1}{6}\overrightarrow {AC} - \frac{5}{6}\overrightarrow {AB} \), với M là trung điểm BC.
Câu 4:
Cho hai điểm A(3; –5), B(1; 0).
a) Tìm tọa độ điểm C sao cho \[\overrightarrow {OC} = - 3\overrightarrow {AB} \].
b) Tìm điểm D đối xứng của A qua C.
c) Tìm điểm M chia đoạn AB theo tỉ số k = –3.
Câu 5:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý.
a) Chứng minh rằng: \(\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \vec 0\).
b) Chứng minh rằng \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OM} + \overrightarrow {ON} + \overrightarrow {OP} \).
Câu 6:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận