Câu hỏi:

22/03/2023 254

Một hình chữ nhật có các kích thước 6 m và 2 m. Một hình tam giác có các cạnh bằng 5 m, 5 m, 6 m. Chứng minh rằng hai hình đó có chu vi bằng nhau và diện tích bằng nhau.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Diện tích hình chữ nhật là: 6.2 = 12 (m2).

Chu vi hình chữ nhật là: (6 + 2).2 = 16 (m).

Chu vi tam giác là: 5 + 5 + 6 = 16 (m).

Media VietJack

Gọi H là trung điểm BC. Suy ra \(AH = \frac{{BC}}{2} = \frac{6}{2} = 3\) (m).

Tam giác ABC có AB = AC = 5 (m).

Suy ra tam giác ABC cân tại A.

Do đó AH vừa là đường trung tuyến, vừa là đường cao của tam giác ABC.

Tam giác ABH vuông tại H: \(AH = \sqrt {A{B^2} - B{H^2}} = \sqrt {{5^2} - {3^2}} = 4\) (m).

Diện tích tam giác ABC là: \({S_{ABC}} = \frac{1}{2}AH.BC = \frac{1}{2}.4.6 = 12\) (m2).

Vậy hình chữ nhật và hình tam giác có chu vi bằng nhau và diện tích bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Muốn đổi hỗn số thành số thập phân, ta làm các bước sau:

Bước 1: Đưa hỗn số thành phân số:

– Lấy phần nguyên nhân với mẫu số, kết quả nhận được cộng thêm tử số;

– Thay kết quả ở trên thành tử số mới, giữ nguyên mẫu số, ta được một phân số từ hỗn số đã cho.

Bước 2: Đưa mẫu số về 10; 100; 1000; … và thực hiện đổi phân số thập phân về số thập phân.

Ví dụ: Đổi các hỗn số \(5\frac{1}{{10}}\) và \(5\frac{3}{4}\) thành số thập phân.

Hướng dẫn giải

Ta có: \(5\frac{1}{{10}} = \frac{{5 \times 10 + 1}}{{10}} = \frac{{51}}{{10}} = 5,1\);

\(5\frac{3}{4} = \frac{{5 \times 4 + 3}}{4} = \frac{{23}}{4} = \frac{{23 \times 25}}{{4 \times 25}} = \frac{{575}}{{100}} = 5,75\).

Câu 2

Lời giải

Lời giải

Media VietJack

Ta có E là trung điểm BC.

Suy ra \(CE = \frac{{BC}}{2} = \frac{a}{2}\).

Ta có AB = CD (do ABCD là hình vuông) và BE = CE (E là trung điểm BC).

Suy ra \(\sqrt {A{B^2} + B{E^2}} = \sqrt {C{D^2} + C{E^2}} \).

Do đó AE = DE.

Tam giác CDE vuông tại C: \(AE = DE = \sqrt {C{D^2} + C{E^2}} = \sqrt {{a^2} + {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 5 }}{2}\).

Ta có \(D{F^2} = \frac{{2D{A^2} + 2D{E^2} - A{E^2}}}{4} = \frac{{2{a^2} + 2{{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2} - {{\left( {\frac{{a\sqrt 5 }}{2}} \right)}^2}}}{4} = \frac{{13{a^2}}}{{16}}\).

Vậy \(DF = \frac{{a\sqrt {13} }}{4}\).

Do đó ta chọn phương án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP