Câu hỏi:
13/07/2024 230Cho biểu thức \(A = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}\) và \(B = \frac{{\sqrt x + 6}}{{\sqrt x - 1}}\).
Đặt P = A.B. Tìm x hữu tỉ để P có giá trị nguyên nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(P = A.B = \frac{{\sqrt x - 1}}{{\sqrt x + 1}}.\frac{{\sqrt x + 6}}{{\sqrt x - 1}} = \frac{{\sqrt x + 1 + 5}}{{\sqrt x + 1}} = 1 + \frac{5}{{\sqrt x + 1}}\).
Để P có giá trị nguyên thì \(5 \vdots \left( {\sqrt x + 1} \right)\).
\( \Rightarrow \sqrt x + 1 \in \) Ư(5).
Ta có bảng sau:
\(\sqrt x + 1\) |
–5 |
–1 |
1 |
5 |
x |
Vô nghiệm |
Vô nghiệm |
0 |
16 |
Với x = 0, ta có \(P = 1 + \frac{5}{{\sqrt 0 + 1}} = 6\).
Với x = 16, ta có \(P = 1 + \frac{5}{{\sqrt {16} + 1}} = 2\).
Vậy P có giá trị nguyên nhỏ nhất khi và chỉ khi x = 16.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
về câu hỏi!