Câu hỏi:
26/03/2023 303Xét tính tăng hay giảm và bị chặn của dãy số: \({u_n} = \frac{{2n - 1}}{{n + 3}},\,n \in {\mathbb{N}^*}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: C
⦁ Ta có \({u_{n + 1}} - {u_n} = \frac{{2\left( {n + 1} \right) - 1}}{{n + 1 + 3}} - \frac{{2n - 1}}{{n + 3}} = \frac{{2n + 1}}{{n + 4}} - \frac{{2n - 1}}{{n + 3}}\)
\( = \frac{{\left( {2n + 1} \right)\left( {n + 3} \right) - \left( {2n - 1} \right)\left( {n + 4} \right)}}{{\left( {n + 4} \right)\left( {n + 3} \right)}} = \frac{7}{{{n^2} + 7n + 12}}\)
\( = \frac{7}{{{{\left( {n + \frac{7}{2}} \right)}^2} - \frac{1}{4}}} > 0,\,\forall n \in {\mathbb{N}^*}\).
Vậy dãy (un) là dãy số tăng.
⦁ Ta có \({u_n} = \frac{{2n - 1}}{{n + 3}} = \frac{{2\left( {n + 3} \right) - 7}}{{n + 3}} = 2 - \frac{7}{{n + 3}}\).
Do n ∈ ℕ* nên \(\frac{1}{{n + 3}} \le \frac{1}{4}\).
Suy ra \(2 - \frac{7}{{n + 3}} \ge 2 - \frac{1}{4} = \frac{7}{4}\).
Vì vậy dãy số (un) bị chặn dưới bởi \(\frac{7}{4}\).
Lại có un bị chặn trên (do un < 2, ∀n ∈ ℕ*).
Vậy (un) bị chặn.
Do đó ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
về câu hỏi!