Câu hỏi:

13/07/2024 4,601

Cho tam giác ABC có 3 góc nhọn, AB < AC, đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh .

b) EF cắt CB tại M. Chứng minh MB.MC = ME.MF.

c) Biết SABC = 24, BD = 3 và CD = 5. Tính SBHC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ∆BAE và ∆CAF, có:

\(\widehat A\) chung;

\(\widehat {BEA} = \widehat {CFA} = 90^\circ \).

Do đó (g.g).

Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}\).

Xét ∆AEF và ∆ABC, có:

\(\widehat A\) chung;

\(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\,\,\,\left( {do\,\,\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}} \right)\).

Do đó (c.g.c).

b) Ta có \(\widehat {AFE} = \widehat {ACB}\) (do ) và \(\widehat {AFE} = \widehat {MFB}\) (2 góc đối đỉnh).

Suy ra \(\widehat {MFB} = \widehat {ACB}\).

Xét ∆MFB và ∆MCE, có:

\(\widehat M\) chung;

\(\widehat {MFB} = \widehat {ACB}\) (chứng minh trên).

Do đó (g.g).

Suy ra \(\frac{{MF}}{{MC}} = \frac{{MB}}{{ME}}\).

Vậy ME.MF = MB.MC (điều phải chứng minh).

c) Ta có \({S_{ABC}} = 24 \Leftrightarrow \frac{1}{2}AD.BC = 24\)

AD.(BD + CD) = 48 AD.(3 + 5) = 48.

AD = 6.

Ta có:

\(\widehat {HBD} + \widehat {BHD} = 90^\circ \) (do tam giác BHD vuông tại D);

\(\widehat {AHE} + \widehat {HAE} = 90^\circ \) (do tam giác AHE vuông tại E);

\(\widehat {BHD} = \widehat {AHE}\) (hai góc đối đỉnh).

Suy ra \(\widehat {HBD} = \widehat {HAE}\).

Xét ∆BHD và ∆ACD, có:

\(\widehat {BDH} = \widehat {ADC} = 90^\circ \);

\(\widehat {HBD} = \widehat {DAC}\) (chứng minh trên).

Do đó (g.g).

Suy ra \(\frac{{BD}}{{AD}} = \frac{{HD}}{{CD}}\).

Khi đó \(HD = \frac{{CD.BD}}{{AD}} = \frac{{5.3}}{6} = \frac{5}{2}\).

Vậy \({S_{BHC}} = \frac{1}{2}HD.BC = \frac{1}{2}.\frac{5}{2}.\left( {3 + 5} \right) = 10\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} = \overrightarrow {CM} + \overrightarrow {MA} = \overrightarrow {CA} \) (do M là trung điểm BC).

Vậy \(\left| {\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\).

b) Ta có \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} = \overrightarrow {BA} - \overrightarrow {BM} = \overrightarrow {MA} \) (do M là trung điểm BC).

Tam giác ABC đều cạnh a có M là trung điểm BC.

Suy ra \(CM = BM = \frac{{BC}}{2} = \frac{a}{2}\).

Tam giác ABC đều có AM là đường trung tuyến.

Suy ra AM cũng là đường cao của tam giác ABC.

Tam giác ACM vuông tại M: \(AM = \sqrt {A{C^2} - C{M^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).

Vậy \(\left| {\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} } \right| = \left| {\overrightarrow {MA} } \right| = MA = \frac{{a\sqrt 3 }}{2}\).

c) Ta có \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow {AN} + \overrightarrow {AQ} \), với N, C là trung điểm AB, AQ.

\( = \overrightarrow {AP} \), với P là đỉnh của hình bình hành AQPN.

Gọi L là hình chiếu của A lên PN.

Ta có MN // AC (MN là đường trung bình của ∆ABC).

Suy ra \(\widehat {ANL} = \widehat {MNB} = \widehat {ACB} = 60^\circ \).

Tam giác ANL vuông tại L:

\(\sin \widehat {ANL} = \frac{{AL}}{{AN}} \Rightarrow AL = \frac{a}{2}.\sin 60^\circ = \frac{{a\sqrt 3 }}{4}\);

\(\cos \widehat {ANL} = \frac{{NL}}{{AN}} \Rightarrow NL = \frac{a}{2}.\cos 60^\circ = \frac{a}{4}\).

Ta có PL = PN + NL = AQ + NL = 2AC + NL \( = 2a + \frac{a}{4} = \frac{{9a}}{4}\).

Tam giác ALP vuông tại L: \(AP = \sqrt {A{L^2} + P{L^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{4}} \right)}^2} + {{\left( {\frac{{9a}}{4}} \right)}^2}} = \frac{{a\sqrt {21} }}{2}\).

Vậy \(\left| {\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} } \right| = \left| {\overrightarrow {AP} } \right| = AP = \frac{{a\sqrt {21} }}{2}\).

d) Gọi K là điểm nằm trên đoạn AM thỏa mãn \(MK = \frac{3}{4}MA\)và H là điểm thuộc tia MB sao cho MH = 2,5MB.

Khi đó \(\overrightarrow {MK} = \frac{3}{4}\overrightarrow {MA} ,\,\,\overrightarrow {MH} = 2,5\overrightarrow {MB} \).

Ta có \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} = \overrightarrow {MK} - \overrightarrow {MH} = \overrightarrow {HK} \).

Ta có \(MK = \frac{3}{4}MA = \frac{3}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{3a\sqrt 3 }}{8}\)\(MH = 2,5MB = 2,5.\frac{a}{2} = \frac{{5a}}{4}\).

Tam giác KMH vuông tại M: \(HK = \sqrt {M{K^2} + M{H^2}} = \sqrt {{{\left( {\frac{{3a\sqrt 3 }}{8}} \right)}^2} + {{\left( {\frac{{5a}}{4}} \right)}^2}} = \frac{{a\sqrt {127} }}{8}\).

Vậy \(\left| {\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} } \right| = \left| {\overrightarrow {HK} } \right| = HK = \frac{{a\sqrt {127} }}{8}\).

Lời giải

Lời giải

a) \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{x + 1}}{x} + \frac{1}{{x - 1}} + \frac{{2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{\left( {x + 1} \right)\left( {x - 1} \right) + x + 2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\frac{{x + 1}}{{x\left( {x - 1} \right)}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{x\left( {x - 1} \right)}}{{x + 1}} = \frac{{{x^2}}}{{x - 1}}\).

b) Ta có \(P < 1 \Leftrightarrow \frac{{{x^2}}}{{x - 1}} < 1\)

\[ \Leftrightarrow \frac{{{x^2}}}{{x - 1}} - 1 < 0 \Leftrightarrow \frac{{{x^2} - x + 1}}{{x - 1}} < 0\]

\[ \Leftrightarrow \frac{{{{\left( {x - \frac{1}{2}} \right)}^2} + \frac{3}{4}}}{{x - 1}} < 0 \Leftrightarrow x - 1 < 0\] (vì \[{\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0,\,\,\forall x \in \mathbb{R}\]).

x < 1.

Vậy x < 1 thì P < 1.

c) Vì x > 2 nên x – 2 > 0.

Do đó x – 1 > x – 2 > 0.

Ta có \(P = \frac{{{x^2}}}{{x - 1}} = \frac{{{x^2} - 1 + 1}}{{x - 1}} = x + 1 + \frac{1}{{x - 1}} = x - 1 + \frac{1}{{x - 1}} + 2\).

Áp dụng bất đẳng thức Cauchy, ta có: \(x - 1 + \frac{1}{{x - 1}} \ge 2\sqrt {\frac{{x - 1}}{{x - 1}}} = 2\sqrt 1 = 2,\,\forall x > 2\).

\( \Leftrightarrow x - 1 + \frac{1}{{x - 1}} + 2 \ge 2 + 2 = 4\).

P ≥ 4.

Dấu “=” xảy ra (x – 1)2 = 1 x – 1 = 1 hoặc x – 1 = –1.

x = 2 (loại vì x > 2) hoặc x = 0 (loại vì x > 2).

Vậy P không có giá trị nhỏ nhất khi x > 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP