Câu hỏi:
13/07/2024 1,923Cho tam giác ABC có 3 góc nhọn, AB < AC, đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh .
b) EF cắt CB tại M. Chứng minh MB.MC = ME.MF.
c) Biết SABC = 24, BD = 3 và CD = 5. Tính SBHC.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆BAE và ∆CAF, có:
\(\widehat A\) chung;
\(\widehat {BEA} = \widehat {CFA} = 90^\circ \).
Do đó (g.g).
Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}\).
Xét ∆AEF và ∆ABC, có:
\(\widehat A\) chung;
\(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\,\,\,\left( {do\,\,\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}} \right)\).
Do đó (c.g.c).
b) Ta có \(\widehat {AFE} = \widehat {ACB}\) (do ) và \(\widehat {AFE} = \widehat {MFB}\) (2 góc đối đỉnh).
Suy ra \(\widehat {MFB} = \widehat {ACB}\).
Xét ∆MFB và ∆MCE, có:
\(\widehat M\) chung;
\(\widehat {MFB} = \widehat {ACB}\) (chứng minh trên).
Do đó (g.g).
Suy ra \(\frac{{MF}}{{MC}} = \frac{{MB}}{{ME}}\).
Vậy ME.MF = MB.MC (điều phải chứng minh).
c) Ta có \({S_{ABC}} = 24 \Leftrightarrow \frac{1}{2}AD.BC = 24\)
⇔ AD.(BD + CD) = 48 ⇔ AD.(3 + 5) = 48.
⇔ AD = 6.
Ta có:
⦁ \(\widehat {HBD} + \widehat {BHD} = 90^\circ \) (do tam giác BHD vuông tại D);
⦁ \(\widehat {AHE} + \widehat {HAE} = 90^\circ \) (do tam giác AHE vuông tại E);
⦁ \(\widehat {BHD} = \widehat {AHE}\) (hai góc đối đỉnh).
Suy ra \(\widehat {HBD} = \widehat {HAE}\).
Xét ∆BHD và ∆ACD, có:
\(\widehat {BDH} = \widehat {ADC} = 90^\circ \);
\(\widehat {HBD} = \widehat {DAC}\) (chứng minh trên).
Do đó (g.g).
Suy ra \(\frac{{BD}}{{AD}} = \frac{{HD}}{{CD}}\).
Khi đó \(HD = \frac{{CD.BD}}{{AD}} = \frac{{5.3}}{6} = \frac{5}{2}\).
Vậy \({S_{BHC}} = \frac{1}{2}HD.BC = \frac{1}{2}.\frac{5}{2}.\left( {3 + 5} \right) = 10\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 5:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!