Câu hỏi:

13/07/2024 5,271

Cho tam giác ABC có ba góc nhọn. Các đường cao AD, BE, CF cắt nhau tại H.

a) Chứng minh và SAEF = cos2A.SABC.

b) Gọi M là trung điểm của BC. Đường thẳng vuông góc với HM tại H cắt AB, AC lần lượt tại P và Q. Chứng minh PH = QH.

c) Chứng minh \(\cot A + \cot B + \cot C \ge \sqrt 3 \).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ∆BAE và ∆CAF, có:

\(\widehat A\) chung;

\(\widehat {BEA} = \widehat {CFA} = 90^\circ \).

Do đó (g.g).

Suy ra \(\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}\).

Xét ∆AEF và ∆ABC, có:

\(\widehat A\) chung;

\(\frac{{AF}}{{AC}} = \frac{{AE}}{{AB}}\,\,\,\left( {do\,\,\frac{{AB}}{{AC}} = \frac{{AE}}{{AF}}} \right)\).

Do đó (c.g.c).

Ta có \(\frac{{{S_{AEB}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}AE.BE}}{{\frac{1}{2}AC.BE}} = \frac{{AE}}{{AC}}\).

Tương tự, ta có \(\frac{{{S_{AEF}}}}{{{S_{ABE}}}} = \frac{{AF}}{{AB}}\).

Suy ra \(\frac{{{S_{AEF}}}}{{{S_{ABE}}}}.\frac{{{S_{AEB}}}}{{{S_{ABC}}}} = \frac{{AF}}{{AB}}.\frac{{AE}}{{AC}} \Leftrightarrow \frac{{{S_{AEF}}}}{{{S_{ABC}}}} = \frac{{AE}}{{AB}}.\frac{{AF}}{{AC}} = \cos A.\cos A = {\cos ^2}A\).

Vậy SAEF = cos2A.SABC.

b) Gọi I là điểm đối xứng của C qua H. Suy ra HC = HI.

Ta có M là trung điểm BC và H và trung điểm CI.

Suy ra HM là đường trung bình của tam giác BCI.

Do đó HM // BI.

Mà HM PH (giả thiết).

Suy ra BI PH.

Tam giác BHI có hai đường cao HP, BF cắt nhau tại P.

Suy ra P là trực tâm của tam giác BHI.

Do đó PI BH.

Mà BH AC (giả thiết).

Vì vậy PI // AC.

Xét ∆HPI và ∆HQC, có:

\(\widehat {PHI} = \widehat {QHC}\) (cặp góc đối đỉnh);

HI = HC (giả thiết);

\(\widehat {HIP} = \widehat {HCQ}\) (do PI // AC, cặp góc so le trong).

Do đó ∆HPI = ∆HQC (g.c.g).

Suy ra HP = HQ.

c) Ta cần chứng minh: cotA.cotB + cotB.cotC + cotC.cotA = 1.

Thật vậy: cotA.cotB + cotB.cotC + cotC.cotA = 1.

\( \Leftrightarrow \frac{1}{{\tan A.\tan B}} + \frac{1}{{\tan B.\tan C}} + \frac{1}{{\tan A.\tan C}} = 1\)

tanC + tanA + tanB = tanA.tanB.tanC.

Ta có \[\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A.\tan B}}\].

tanA + tanB = (1 – tanA.tanB).tan(A + B)

tanA + tanB + tanC = (1 – tanA.tanB).tan(π – C) + tanC

tanA.tanB.tanC = –tanC.(1 – tanA.tanB) + tanC

tanA.tanB.tanC = –tanC + tanA.tanB.tanC + tanC

tanA.tanB.tanC = tanA.tanB.tanC (luôn đúng).

Vì vậy ta có cotA.cotB + cotB.cotC + cotC.cotA = 1.

Ta có (cotA + cotB + cotC)2

= cot2A + cot2B + cot2C + 2cotA.cotB + 2cotB.cotC + 2cotC.cotA

\( = \frac{1}{2}\left[ {{{\left( {\cot A - \cot B} \right)}^2} + {{\left( {\cot B - \cot C} \right)}^2} + {{\left( {\cot C - \cot A} \right)}^2}} \right]\)

\( + 3\left( {\cot A.\cot B + \cot B.\cot C + \cot C.\cot A} \right) \ge 3\left( {\cot A.\cot B + \cot B.\cot C + \cot C.\cot A} \right)\)

= 3.1 = 3.

Vậy \(\cot A + \cot B + \cot C \ge \sqrt 3 \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} = \overrightarrow {CM} + \overrightarrow {MA} = \overrightarrow {CA} \) (do M là trung điểm BC).

Vậy \(\left| {\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\).

b) Ta có \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} = \overrightarrow {BA} - \overrightarrow {BM} = \overrightarrow {MA} \) (do M là trung điểm BC).

Tam giác ABC đều cạnh a có M là trung điểm BC.

Suy ra \(CM = BM = \frac{{BC}}{2} = \frac{a}{2}\).

Tam giác ABC đều có AM là đường trung tuyến.

Suy ra AM cũng là đường cao của tam giác ABC.

Tam giác ACM vuông tại M: \(AM = \sqrt {A{C^2} - C{M^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).

Vậy \(\left| {\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} } \right| = \left| {\overrightarrow {MA} } \right| = MA = \frac{{a\sqrt 3 }}{2}\).

c) Ta có \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow {AN} + \overrightarrow {AQ} \), với N, C là trung điểm AB, AQ.

\( = \overrightarrow {AP} \), với P là đỉnh của hình bình hành AQPN.

Gọi L là hình chiếu của A lên PN.

Ta có MN // AC (MN là đường trung bình của ∆ABC).

Suy ra \(\widehat {ANL} = \widehat {MNB} = \widehat {ACB} = 60^\circ \).

Tam giác ANL vuông tại L:

\(\sin \widehat {ANL} = \frac{{AL}}{{AN}} \Rightarrow AL = \frac{a}{2}.\sin 60^\circ = \frac{{a\sqrt 3 }}{4}\);

\(\cos \widehat {ANL} = \frac{{NL}}{{AN}} \Rightarrow NL = \frac{a}{2}.\cos 60^\circ = \frac{a}{4}\).

Ta có PL = PN + NL = AQ + NL = 2AC + NL \( = 2a + \frac{a}{4} = \frac{{9a}}{4}\).

Tam giác ALP vuông tại L: \(AP = \sqrt {A{L^2} + P{L^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{4}} \right)}^2} + {{\left( {\frac{{9a}}{4}} \right)}^2}} = \frac{{a\sqrt {21} }}{2}\).

Vậy \(\left| {\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} } \right| = \left| {\overrightarrow {AP} } \right| = AP = \frac{{a\sqrt {21} }}{2}\).

d) Gọi K là điểm nằm trên đoạn AM thỏa mãn \(MK = \frac{3}{4}MA\)và H là điểm thuộc tia MB sao cho MH = 2,5MB.

Khi đó \(\overrightarrow {MK} = \frac{3}{4}\overrightarrow {MA} ,\,\,\overrightarrow {MH} = 2,5\overrightarrow {MB} \).

Ta có \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} = \overrightarrow {MK} - \overrightarrow {MH} = \overrightarrow {HK} \).

Ta có \(MK = \frac{3}{4}MA = \frac{3}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{3a\sqrt 3 }}{8}\)\(MH = 2,5MB = 2,5.\frac{a}{2} = \frac{{5a}}{4}\).

Tam giác KMH vuông tại M: \(HK = \sqrt {M{K^2} + M{H^2}} = \sqrt {{{\left( {\frac{{3a\sqrt 3 }}{8}} \right)}^2} + {{\left( {\frac{{5a}}{4}} \right)}^2}} = \frac{{a\sqrt {127} }}{8}\).

Vậy \(\left| {\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} } \right| = \left| {\overrightarrow {HK} } \right| = HK = \frac{{a\sqrt {127} }}{8}\).

Lời giải

Lời giải

a) \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{x + 1}}{x} + \frac{1}{{x - 1}} + \frac{{2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{\left( {x + 1} \right)\left( {x - 1} \right) + x + 2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)

\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\frac{{x + 1}}{{x\left( {x - 1} \right)}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{x\left( {x - 1} \right)}}{{x + 1}} = \frac{{{x^2}}}{{x - 1}}\).

b) Ta có \(P < 1 \Leftrightarrow \frac{{{x^2}}}{{x - 1}} < 1\)

\[ \Leftrightarrow \frac{{{x^2}}}{{x - 1}} - 1 < 0 \Leftrightarrow \frac{{{x^2} - x + 1}}{{x - 1}} < 0\]

\[ \Leftrightarrow \frac{{{{\left( {x - \frac{1}{2}} \right)}^2} + \frac{3}{4}}}{{x - 1}} < 0 \Leftrightarrow x - 1 < 0\] (vì \[{\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0,\,\,\forall x \in \mathbb{R}\]).

x < 1.

Vậy x < 1 thì P < 1.

c) Vì x > 2 nên x – 2 > 0.

Do đó x – 1 > x – 2 > 0.

Ta có \(P = \frac{{{x^2}}}{{x - 1}} = \frac{{{x^2} - 1 + 1}}{{x - 1}} = x + 1 + \frac{1}{{x - 1}} = x - 1 + \frac{1}{{x - 1}} + 2\).

Áp dụng bất đẳng thức Cauchy, ta có: \(x - 1 + \frac{1}{{x - 1}} \ge 2\sqrt {\frac{{x - 1}}{{x - 1}}} = 2\sqrt 1 = 2,\,\forall x > 2\).

\( \Leftrightarrow x - 1 + \frac{1}{{x - 1}} + 2 \ge 2 + 2 = 4\).

P ≥ 4.

Dấu “=” xảy ra (x – 1)2 = 1 x – 1 = 1 hoặc x – 1 = –1.

x = 2 (loại vì x > 2) hoặc x = 0 (loại vì x > 2).

Vậy P không có giá trị nhỏ nhất khi x > 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP