Câu hỏi:

27/03/2023 605

Một tổ chuyên môn gồm 7 thầy giáo và 5 cô giáo, trong đó thầy An và cô Bình là vợ chồng. Chọn ngẫu nhiên 5 người để lập hội đồng chấm thi vấn đáp. Có bao nhiêu cách lập sao cho hội đồng có 3 thầy, 2 cô và nhất thiết phải có thầy An hoặc cô Bình nhưng không có cả hai.

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Đáp án đúng là: A

Trường hợp 1: Trong hội đồng gồm thầy An, 2 thầy giáo trong số 6 thầy còn lại và 2 cô giáo trong số 4 cô còn lại (cô Bình không được chọn).

Khi đó ta có \(C_6^2.C_4^2\) (cách chọn).

Trường hợp 2: Trong hội đồng gồm cô Bình, 1 cô giáo trong số 4 cô còn lại, và 3 thầy giáo trong số 6 thầy giáo (thầy An không được chọn).

Khi đó ta có \(C_4^1.C_6^3\) (cách chọn).

Vậy ta có tất cả \(C_6^2.C_4^2 + C_4^1.C_6^3 = 170\) cách chọn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.

a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);

b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);

c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);

d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).

Xem đáp án » 13/07/2024 31,429

Câu 2:

Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?

Xem đáp án » 13/07/2024 16,092

Câu 3:

Khai triển hằng đẳng thức: x3 + y3.

Xem đáp án » 13/07/2024 14,879

Câu 4:

Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).

a) Rút gọn P.

b) Tìm x để P < 1.

c) Tìm giá trị nhỏ nhất của P khi x > 2.

Xem đáp án » 13/07/2024 13,503

Câu 5:

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Xem đáp án » 13/07/2024 11,806

Câu 6:

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.

a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).

b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).

Xem đáp án » 13/07/2024 10,520

Câu 7:

Hình chóp S.ABCD có đáy là hình thoi, AB = 2a, \(\widehat {BAD} = 120^\circ \). Hình chiếu vuông góc của S lên (ABCD) là I, với I là giao điểm của hai đường chéo AC và BD, biết \(SI = \frac{a}{2}\). Tính thể tích khối chóp S. ABCD.

Xem đáp án » 13/07/2024 9,090

Bình luận


Bình luận