Câu hỏi:

27/03/2023 275

Cho nửa đường tròn đường kính AB, C là một điểm thuộc nửa đường tròn, vẽ dây BD là phân giác của \[\widehat {ABC}\], BD cắt AC tại E, AD cắt BC tại G. H là điểm đối xứng với E qua D. Tứ giác AHGE là hình gì? Chứng minh AH là tiếp tuyến đường tròn.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Ta có \(\widehat {ADB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Suy ra BD AG.

Tam giác AGB có BD vừa là đường cao vừa là đường phân giác.

Suy ra tam giác AGB cân tại B.

Do đó BD cũng là đường trung tuyến của tam giác AGB.

Vì vậy D là trung điểm của AG.

Mà D cũng là trung điểm của HE (do H là điểm đối xứng với E qua D) và AG HE (chứng minh trên).

Vậy tứ giác AHGE là hình thoi.

Ta có \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Suy ra CA BG.

Tam giác AGB có hai đường cao AC, BD cắt nhau tại E.

Suy ra E là trực tâm của tam giác AGB.

Do đó GE AB.

Mà GE // AH (do tứ giác AHGE là hình thoi).

Suy ra AH AB.

Vậy AH là tiếp tuyến của đường tròn đường kính AB.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.

a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);

b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);

c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);

d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).

Xem đáp án » 13/07/2024 30,354

Câu 2:

Một trang trại cần thuê xe vận chuyển 450 con lợn và 35 tấn cám. Nơi cho thuê xe chỉ có 12 xe lớn và 10 xe nhỏ. Một chiếc xe lớn có thể chở 50 con lợn và 5 tấn cám. Một chiếc xe nhỏ có thể chở 30 con lợn và 1 tấn cám. Tiền thuê một xe lớn là 4 triệu đồng, một xe nhỏ là 2 triệu đồng. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí thuê xe là thấp nhất?

Xem đáp án » 13/07/2024 15,633

Câu 3:

Khai triển hằng đẳng thức: x3 + y3.

Xem đáp án » 13/07/2024 13,952

Câu 4:

Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.

a) Chứng minh AH = DE.

b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.

c) Chứng minh O là trực tâm của tam giác ABQ.

d) Chứng minh SABC = 2SDEQP.

Xem đáp án » 13/07/2024 10,549

Câu 5:

Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).

a) Rút gọn P.

b) Tìm x để P < 1.

c) Tìm giá trị nhỏ nhất của P khi x > 2.

Xem đáp án » 13/07/2024 10,067

Câu 6:

Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.

a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).

b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).

Xem đáp án » 13/07/2024 9,892

Câu 7:

Hình chóp S.ABCD có đáy là hình thoi, AB = 2a, \(\widehat {BAD} = 120^\circ \). Hình chiếu vuông góc của S lên (ABCD) là I, với I là giao điểm của hai đường chéo AC và BD, biết \(SI = \frac{a}{2}\). Tính thể tích khối chóp S. ABCD.

Xem đáp án » 13/07/2024 8,693

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store