Câu hỏi:
27/03/2023 263Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có \(\widehat {ADB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Suy ra BD ⊥ AG.
Tam giác AGB có BD vừa là đường cao vừa là đường phân giác.
Suy ra tam giác AGB cân tại B.
Do đó BD cũng là đường trung tuyến của tam giác AGB.
Vì vậy D là trung điểm của AG.
Mà D cũng là trung điểm của HE (do H là điểm đối xứng với E qua D) và AG ⊥ HE (chứng minh trên).
Vậy tứ giác AHGE là hình thoi.
Ta có \(\widehat {ACB} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).
Suy ra CA ⊥ BG.
Tam giác AGB có hai đường cao AC, BD cắt nhau tại E.
Suy ra E là trực tâm của tam giác AGB.
Do đó GE ⊥ AB.
Mà GE // AH (do tứ giác AHGE là hình thoi).
Suy ra AH ⊥ AB.
Vậy AH là tiếp tuyến của đường tròn đường kính AB.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
về câu hỏi!