Câu hỏi:
13/07/2024 652Rút gọn các phân thức sau:
a) \(\frac{{9 - 12x + 4{x^2}}}{{2x - 3}}\);
b) \(\frac{{{{\left( {2x + 3} \right)}^2} + 2\left( {4{x^2} - 9} \right) + {{\left( {2x - 3} \right)}^2}}}{{{{\left( {2x - 3} \right)}^2} - 2\left( {4{x^2} - 9} \right) + {{\left( {2x + 3} \right)}^2}}}\);
c) \(\frac{{{{\left( {2x + 3} \right)}^3} - {{\left( {2x - 3} \right)}^3}}}{{{{\left( {3x + 4} \right)}^2} + 3{x^2} - 24x - 7}}\);
d) \(\frac{{\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) + 1}}{{{x^2} + 5x + 5}}\);
e) \(\frac{{{x^4} + 4}}{{x\left( {{x^2} + 2} \right) - 2{x^2} - {{\left( {x - 2} \right)}^2} - 1}}\).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) \(\frac{{9 - 12x + 4{x^2}}}{{2x - 3}} = \frac{{{{\left( {2x - 3} \right)}^2}}}{{2x - 3}} = 2x - 3\).
b) \(\frac{{{{\left( {2x + 3} \right)}^2} + 2\left( {4{x^2} - 9} \right) + {{\left( {2x - 3} \right)}^2}}}{{{{\left( {2x - 3} \right)}^2} - 2\left( {4{x^2} - 9} \right) + {{\left( {2x + 3} \right)}^2}}}\)
\( = \frac{{{{\left( {2x + 3} \right)}^2} + 2\left( {2x + 3} \right)\left( {2x - 3} \right) + {{\left( {2x - 3} \right)}^2}}}{{{{\left( {2x - 3} \right)}^2} - 2\left( {2x + 3} \right)\left( {2x - 3} \right) + {{\left( {2x + 3} \right)}^2}}}\)
\( = \frac{{{{\left( {2x + 3 + 2x - 3} \right)}^2}}}{{{{\left( {2x - 3 - 2x - 3} \right)}^2}}}\)
\( = \frac{{{{\left( {4x} \right)}^2}}}{{{{\left( { - 6} \right)}^2}}} = \frac{{16{x^2}}}{{36}} = \frac{{4{x^2}}}{9}\).
c) \(\frac{{{{\left( {2x + 3} \right)}^3} - {{\left( {2x - 3} \right)}^3}}}{{{{\left( {3x + 4} \right)}^2} + 3{x^2} - 24x - 7}}\)
\( = \frac{{\left( {2x + 3 - 2x + 3} \right)\left[ {{{\left( {2x + 3} \right)}^2} + \left( {2x + 3} \right)\left( {2x - 3} \right) + {{\left( {2x - 3} \right)}^2}} \right]}}{{9{x^2} + 24x + 16 + 3{x^2} - 24x - 7}}\)
\( = \frac{{6\left( {4{x^2} + 12x + 9 + 4{x^2} - 9 + 4{x^2} - 12x + 9} \right)}}{{12{x^2} + 9}}\)
\( = \frac{{6\left( {12{x^2} + 9} \right)}}{{12{x^2} + 9}} = 6\).
d) \(\frac{{\left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right) + 1}}{{{x^2} + 5x + 5}}\)
\( = \frac{{\left( {{x^2} + 5x + 4} \right)\left( {{x^2} + 5x + 6} \right) + 1}}{{{x^2} + 5x + 5}}\)
\( = \frac{{\left( {{x^2} + 5x + 5 - 1} \right)\left( {{x^2} + 5x + 5 + 1} \right) + 1}}{{{x^2} + 5x + 5}}\)
\( = \frac{{{{\left( {{x^2} + 5x + 5} \right)}^2} - 1 + 1}}{{{x^2} + 5x + 5}}\)
\( = \frac{{{{\left( {{x^2} + 5x + 5} \right)}^2}}}{{{x^2} + 5x + 5}} = {x^2} + 5x + 5\).
e) \(\frac{{{x^4} + 4}}{{x\left( {{x^2} + 2} \right) - 2{x^2} - {{\left( {x - 2} \right)}^2} - 1}}\)
\( = \frac{{{x^4} + 4}}{{{x^3} + 2x - 2{x^2} - \left( {{x^2} - 4x + 4} \right) - 1}}\)
\( = \frac{{{x^4} + 4}}{{{x^3} - 3{x^2} + 6x - 5}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
về câu hỏi!