Câu hỏi:
13/07/2024 768Từ một điểm A nằm bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Đường thẳng vuông góc với OB tại O cắt tia AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
1) Xác định hình tính của tứ giác AMON.
2) Điểm A phải cách O một khoảng là bao nhiêu để MN là tiếp tuyến của (O)?
3) Tính diện tích tứ giác AMON.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
1) Tứ giác AMON có: AM // ON (cùng vuông góc với OB) và AC // OM (cùng vuông góc với OC).
Suy ra tứ giác AMON là hình bình hành (1)
Xét ∆OBM và ∆OCN, có:
\[\widehat {MBO} = \widehat {NCO} = 90^\circ \];
OB = OC (= R);
\(\widehat {MOB} = \widehat {NOC}\) (cùng phụ với \(\widehat {MON}\)).
Do đó ∆OBM = ∆OCN (g.c.g).
Suy ra OM = ON (cặp cạnh tương ứng) (2)
Từ (1), (2), suy ra tứ giác AMON là hình thoi.
2) Gọi I là giao điểm của AO và MN.
Suy ra AO ⊥ MN tại I và I là trung điểm AO và MN (do tứ giác AMON là hình thoi).
MN tiếp xúc với (O; R) khi và chỉ khi d(O, MN) = R.
⇔ OI = R.
⇔ OA = 2R (do I là trung điểm AO).
Vậy OA = 2R thỏa mãn yêu cầu bài toán.
3) Tam giác ABO vuông tại B: \(\sin \widehat {OAB} = \frac{{OB}}{{OA}} = \frac{R}{{2R}} = \frac{1}{2}\).
\( \Rightarrow \widehat {OAB} = 30^\circ \).
Ta có \(\widehat {AON} = \widehat {OAB} = 30^\circ \) (AM // ON và cặp góc này là cặp góc so le trong).
Tam giác OIN vuông tại I: \(\tan \widehat {AON} = \frac{{IN}}{{OI}}\).
Suy ra \(IN = R.\tan 30^\circ = \frac{{R\sqrt 3 }}{3}\).
Do đó \(MN = \frac{{2R\sqrt 3 }}{3}\).
Vậy diện tích hình thoi AMON là: \({S_{AMON}} = \frac{1}{2}OA.MN = \frac{1}{2}.2R.\frac{{2R\sqrt 3 }}{3} = \frac{{2{R^2}\sqrt 3 }}{3}\).
Đã bán 189
Đã bán 386
Đã bán 1,5k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
Câu 3:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận