Câu hỏi:
13/07/2024 2,344Cho hàm số bậc nhất y = (2m – 3)x + 5m – 1 (m là tham số, \[m \ne \frac{3}{2}\]).
a) Tìm m để hàm số nghịch biến trên ℝ.
b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là –6.
c) Tìm m để đồ thị hàm số cắt trục tung tại điểm có tung độ là –6.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
a) Hàm số nghịch biến trên ℝ ⇔ 2m – 3 < 0 \( \Leftrightarrow m < \frac{3}{2}\).
Vậy \(m < \frac{3}{2}\) thỏa mãn yêu cầu bài toán.
b) Đồ thị hàm số cắt trục hoành tại điểm có hoành độ là –6.
Suy ra giao điểm của đồ thị hàm số và trục hoành là M(–6; 0).
Khi đó 0 = (2m – 3).(–6) + 5m – 1
⇔ –7m + 17 = 0
\( \Leftrightarrow m = \frac{{17}}{7}\).
Vậy \(m = \frac{{17}}{7}\) thỏa mãn yêu cầu bài toán.
c) Đồ thị hàm số cắt trục tung tại điểm có tung độ là –6.
Suy ra giao điểm của đồ thị hàm số và trục tung là A(0; –6).
Khi đó –6 = (2m – 3).0 + 5m – 1
⇔ 5m = –5
⇔ m = –1.
Vậy m = –1 thỏa mãn yêu cầu bài toán.
Đã bán 1,3k
Đã bán 187
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
Câu 3:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Câu 7:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
140 câu Bài tập Hàm số mũ và Logarit cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận