Câu hỏi:
12/07/2024 247Cho tam giác cân ABC có CA = CB và góc ABC nhọn. Các đường cao CD, BE, AF cắt nhau ở H.
a) Chứng minh 4 điểm C, F, H, E nằm trên đường tròn (O). Xác định tâm O của đường tròn.
b) Chứng minh (O) tiếp xúc với đường tròn ngoại tiếp tam giác ABC.
c) Chứng minh DF là tiếp tuyến của đường tròn (O).
d) Chứng minh FB là phân giác của góc DFE.
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Ta có: \(AE \bot BC,BF \bot AC\) nên \[\widehat {CFH} = \widehat {CEH} = 90^\circ \].
Do đó F, E cùng nằm trên đường tròn đường kính CH.
Suy ra 4 điểm C, F, H, E cùng nằm trên đường tròn (O) đường kính CH với O là trung điểm của CH.
b) Gọi (O’) là đường tròn ngoại tiếp tam giác ABC.
Do tam giác ABC có CA = CB nên tam giác ABC cân tại C
Do đó tâm O’ của đường tròn ngoại tiếp tam giác nằm trên đường cao CD.
Suy ra 3 điểm C, O, O’ thẳng hàng và OO’ = O’C – OC.
Lại có C cùng nằm trên đường tròn (O) và (O’)
Vậy (O) tiếp xúc với (O’) với (O’) là đường tròn ngoại tiếp tam giác ABC.
c) Chứng minh tương tự câu a ta cũng có tứ giác AFHD là tứ giác nội tiếp
Suy ra \(\widehat {HFD} = \widehat {HAD}\) (hai góc nội tiếp cùng chắn cung HD).
Lại có \(\widehat {HAD} = \widehat {ECH}\) (do cùng phụ với \(\widehat {AHD} = \widehat {CHE}\))
\(\widehat {ECH} = \widehat {FCH}\) (do tam giác ABC cân tại C nên CH là đường phân giác)
\(\widehat {FCH} = \widehat {FCO} = \widehat {CFO}\) (do tam giác OCF có OC = OF nên là tam giác cân tại O)
Do đó \(\widehat {HFD} = \widehat {CFO}\).
Mặt khác \(\widehat {CFO} + \widehat {OFH} = 90^\circ \) nên \(\widehat {HFD} + \widehat {{\rm{OF}}H} = 90^\circ \)
Hay \(\widehat {DFO} = 90^\circ \)
Mà F nằm trên (O) nên DF là tiếp tuyến của (O).
d) Do DF là tiếp tuyến của (O) nên \(\widehat {DFH} = \widehat {FCH}\) (tính chất góc tạo bởi tia tiếp tuyến và dây cung với góc nội tiếp đường tròn cùng chắn cung đó)
Ta cũng có \(\widehat {EFH} = \widehat {ECH}\) (hai góc nội tiếp cùng chắn cung EH)
Mà \(\widehat {FCH} = \widehat {ECH}\) (do CH là phân giác của góc ACB)
Suy ra \(\widehat {EFH} = \widehat {DFH}\)
Do đó FB là phân giác của \(\widehat {DFE}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 5:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
53 câu Bài tập về Tính đơn điệu của hàm số có lời giải (P1)
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
120 câu Bài tập Cực trị hàm số cơ bản, nâng cao có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
206 câu Bài tập Nguyên hàm, tích phân cơ bản, nâng cao cực hay có lời giải chi tiết (P1)
175 câu Bài tập Số phức cơ bản, nâng cao có lời giải (P1)
về câu hỏi!