Câu hỏi:
13/07/2024 3,902Cho đường tròn (O; R), đường kính MN. Qua M và N vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở A và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với AP và cắt đường thẳng (d’) ở B.
a) Chứng minh OA = OP.
b) Hạ OH vuông góc với AB. Chứng minh OH = R và AB là tiếp tuyến của đường tròn (O).
c) Chứng minh AM.BN = R2.
d) Tìm vị trí của điểm A để diện tích tứ giác ABNM nhỏ nhất.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆OMA và ∆ONP, có:
\(\widehat {AOM} = \widehat {NOP}\) (đối đỉnh);
OM = ON (= R);
\(\widehat {AMO} = \widehat {ONP} = 90^\circ \).
Do đó ∆OMA = ∆ONP (g.c.g).
Suy ra OA = OP (cặp cạnh tương ứng).
b) ∆ABP có OB ⊥ AP (giả thiết) OA = OP (chứng minh trên).
Suy ra OB vừa là đường cao, vừa là đường trung tuyến của ∆ABP.
Do đó ∆ABP cân tại B.
Suy ra OB cũng là đường phân giác của ∆ABP.
Vì vậy OH = ON = R (tính chất điểm nằm trên tia phân giác của một góc).
Ta có AB ⊥ OH tại H.
Mà H thuộc đường tròn (O).
Vậy AB là tiếp tuyến của (O).
c) Ta có HA = MA và HB = NB (tính chất hai tiếp tuyến cắt nhau).
Tam giác AOB vuông tại O có OH là đường cao:
HA.HB = OH2 (hệ thức lượng trong tam giác vuông).
⇔ AM.BN = R2.
Vậy ta có điều phải chứng minh.
d) Tứ giác AMNB có \(\widehat {AMN} = \widehat {MNB} = 90^\circ \).
Suy ra AMNB là hình thang vuông.
Khi đó \({S_{AMNB}} = \frac{1}{2}\left( {AM + BN} \right).MN = \frac{1}{2}.\left( {AH + HB} \right).2R = AB.R\).
Ta có R không đổi và AB ≥ MN.
Suy ra SAMNB nhỏ nhất ⇔ AB nhỏ nhất.
Tức là, AB = MN.
Khi đó MN // AB.
Vì vậy AMNB là hình chữ nhật.
Suy ra AM = BN = OH = R.
Vậy điểm A nằm trên đường thẳng song song với MN và cách MN một khoảng bằng R.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác đều ABC cạnh a, điểm M là trung điểm BC. Dựng các vectơ sau và tính độ dài của chúng.
a) \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} \);
b) \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} \);
c) \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} \);
d) \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} \).
Câu 2:
Câu 4:
Câu 5:
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE.
a) Chứng minh AH = DE.
b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông.
c) Chứng minh O là trực tâm của tam giác ABQ.
d) Chứng minh SABC = 2SDEQP.
Câu 6:
Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của AD, BC.
a) Chứng minh \(\overrightarrow {MN} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {DC} } \right)\).
b) Xác định điểm O sao cho \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \vec 0\).
Câu 7:
Cho biểu thức \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\).
a) Rút gọn P.
b) Tìm x để P < 1.
c) Tìm giá trị nhỏ nhất của P khi x > 2.
về câu hỏi!