Cho đường tròn (O; R) và dây MN. Các tiếp tuyến của (O) tại M, N cắt nhau ở A. Qua M, kẻ đường thẳng song song với AN, cắt (O) tại điểm thứ hai là P. Q là giao điểm của AP và (O), K là giao điểm của MQ và AN. Chứng minh
a) AK2 = KQ.KM.
b) K là trung điểm của AN.
Cho đường tròn (O; R) và dây MN. Các tiếp tuyến của (O) tại M, N cắt nhau ở A. Qua M, kẻ đường thẳng song song với AN, cắt (O) tại điểm thứ hai là P. Q là giao điểm của AP và (O), K là giao điểm của MQ và AN. Chứng minh
a) AK2 = KQ.KM.
b) K là trung điểm của AN.
Quảng cáo
Trả lời:

Lời giải
a) Ta có \(\widehat {AMQ} = \widehat {MPQ}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung) và \(\widehat {QAK} = \widehat {MPQ}\) (do AK // MP).
Suy ra \(\widehat {AMQ} = \widehat {QAK}\).
Xét ∆AKQ và ∆MAK, có:
\(\widehat {AMQ} = \widehat {QAK}\) (chứng minh trên);
\(\widehat {AKQ}\) chung.
Do đó (g.g).
Suy ra \(\frac{{AK}}{{MA}} = \frac{{KQ}}{{AK}} = \frac{{AQ}}{{MK}}\).
\[ \Leftrightarrow \frac{{AK}}{{MA}} = \frac{{MK}}{{AK}} = \frac{{AQ}}{{KQ}}\]
\[ \Leftrightarrow \frac{{AK}}{{MK}} = \frac{{MA}}{{AK}} = \frac{{AQ}}{{KQ}}\]
\[ \Leftrightarrow \frac{{AK}}{{MK}} = \frac{{KQ}}{{AK}} = \frac{{AQ}}{{MA}}\].
Vậy AK2 = KQ.KM (điều phải chứng minh).
b) Xét ∆KQN và ∆KNM, có:
\(\widehat {KNQ} = \widehat {KMN}\) (góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung);
\(\widehat {MKN}\) chung.
Do đó (g.g).
Suy ra \(\frac{{KQ}}{{KN}} = \frac{{QN}}{{NM}} = \frac{{KN}}{{KM}}\).
Do đó KN2 = KQ.KM.
Mà AK2 = KQ.KM (câu a).
Suy ra KN = AK.
Vậy K là trung điểm AN.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có \(\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} = \overrightarrow {CM} + \overrightarrow {MA} = \overrightarrow {CA} \) (do M là trung điểm BC).
Vậy \(\left| {\frac{1}{2}\overrightarrow {CB} + \overrightarrow {MA} } \right| = \left| {\overrightarrow {CA} } \right| = CA = a\).
b) Ta có \(\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} = \overrightarrow {BA} - \overrightarrow {BM} = \overrightarrow {MA} \) (do M là trung điểm BC).
Tam giác ABC đều cạnh a có M là trung điểm BC.
Suy ra \(CM = BM = \frac{{BC}}{2} = \frac{a}{2}\).
Tam giác ABC đều có AM là đường trung tuyến.
Suy ra AM cũng là đường cao của tam giác ABC.
Tam giác ACM vuông tại M: \(AM = \sqrt {A{C^2} - C{M^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).
Vậy \(\left| {\overrightarrow {BA} - \frac{1}{2}\overrightarrow {BC} } \right| = \left| {\overrightarrow {MA} } \right| = MA = \frac{{a\sqrt 3 }}{2}\).
c) Ta có \(\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} = \overrightarrow {AN} + \overrightarrow {AQ} \), với N, C là trung điểm AB, AQ.
\( = \overrightarrow {AP} \), với P là đỉnh của hình bình hành AQPN.
Gọi L là hình chiếu của A lên PN.
Ta có MN // AC (MN là đường trung bình của ∆ABC).
Suy ra \(\widehat {ANL} = \widehat {MNB} = \widehat {ACB} = 60^\circ \).
Tam giác ANL vuông tại L:
⦁ \(\sin \widehat {ANL} = \frac{{AL}}{{AN}} \Rightarrow AL = \frac{a}{2}.\sin 60^\circ = \frac{{a\sqrt 3 }}{4}\);
⦁ \(\cos \widehat {ANL} = \frac{{NL}}{{AN}} \Rightarrow NL = \frac{a}{2}.\cos 60^\circ = \frac{a}{4}\).
Ta có PL = PN + NL = AQ + NL = 2AC + NL \( = 2a + \frac{a}{4} = \frac{{9a}}{4}\).
Tam giác ALP vuông tại L: \(AP = \sqrt {A{L^2} + P{L^2}} = \sqrt {{{\left( {\frac{{a\sqrt 3 }}{4}} \right)}^2} + {{\left( {\frac{{9a}}{4}} \right)}^2}} = \frac{{a\sqrt {21} }}{2}\).
Vậy \(\left| {\frac{1}{2}\overrightarrow {AB} + 2\overrightarrow {AC} } \right| = \left| {\overrightarrow {AP} } \right| = AP = \frac{{a\sqrt {21} }}{2}\).
d) Gọi K là điểm nằm trên đoạn AM thỏa mãn \(MK = \frac{3}{4}MA\)và H là điểm thuộc tia MB sao cho MH = 2,5MB.
Khi đó \(\overrightarrow {MK} = \frac{3}{4}\overrightarrow {MA} ,\,\,\overrightarrow {MH} = 2,5\overrightarrow {MB} \).
Ta có \(\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} = \overrightarrow {MK} - \overrightarrow {MH} = \overrightarrow {HK} \).
Ta có \(MK = \frac{3}{4}MA = \frac{3}{4}.\frac{{a\sqrt 3 }}{2} = \frac{{3a\sqrt 3 }}{8}\) và \(MH = 2,5MB = 2,5.\frac{a}{2} = \frac{{5a}}{4}\).
Tam giác KMH vuông tại M: \(HK = \sqrt {M{K^2} + M{H^2}} = \sqrt {{{\left( {\frac{{3a\sqrt 3 }}{8}} \right)}^2} + {{\left( {\frac{{5a}}{4}} \right)}^2}} = \frac{{a\sqrt {127} }}{8}\).
Vậy \(\left| {\frac{3}{4}\overrightarrow {MA} - 2,5\overrightarrow {MB} } \right| = \left| {\overrightarrow {HK} } \right| = HK = \frac{{a\sqrt {127} }}{8}\).Lời giải
Lời giải
a) \(P = \frac{{{x^2} + x}}{{{x^2} - 2x + 1}}:\left( {\frac{{x + 1}}{x} - \frac{1}{{1 - x}} + \frac{{2 - {x^2}}}{{{x^2} - x}}} \right)\)
\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{x + 1}}{x} + \frac{1}{{x - 1}} + \frac{{2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)
\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\left[ {\frac{{\left( {x + 1} \right)\left( {x - 1} \right) + x + 2 - {x^2}}}{{x\left( {x - 1} \right)}}} \right]\)
\( = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}:\frac{{x + 1}}{{x\left( {x - 1} \right)}} = \frac{{x\left( {x + 1} \right)}}{{{{\left( {x - 1} \right)}^2}}}.\frac{{x\left( {x - 1} \right)}}{{x + 1}} = \frac{{{x^2}}}{{x - 1}}\).
b) Ta có \(P < 1 \Leftrightarrow \frac{{{x^2}}}{{x - 1}} < 1\)
\[ \Leftrightarrow \frac{{{x^2}}}{{x - 1}} - 1 < 0 \Leftrightarrow \frac{{{x^2} - x + 1}}{{x - 1}} < 0\]
\[ \Leftrightarrow \frac{{{{\left( {x - \frac{1}{2}} \right)}^2} + \frac{3}{4}}}{{x - 1}} < 0 \Leftrightarrow x - 1 < 0\] (vì \[{\left( {x - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0,\,\,\forall x \in \mathbb{R}\]).
⇔ x < 1.
Vậy x < 1 thì P < 1.
c) Vì x > 2 nên x – 2 > 0.
Do đó x – 1 > x – 2 > 0.
Ta có \(P = \frac{{{x^2}}}{{x - 1}} = \frac{{{x^2} - 1 + 1}}{{x - 1}} = x + 1 + \frac{1}{{x - 1}} = x - 1 + \frac{1}{{x - 1}} + 2\).
Áp dụng bất đẳng thức Cauchy, ta có: \(x - 1 + \frac{1}{{x - 1}} \ge 2\sqrt {\frac{{x - 1}}{{x - 1}}} = 2\sqrt 1 = 2,\,\forall x > 2\).
\( \Leftrightarrow x - 1 + \frac{1}{{x - 1}} + 2 \ge 2 + 2 = 4\).
⇔ P ≥ 4.
Dấu “=” xảy ra ⇔ (x – 1)2 = 1 ⇔ x – 1 = 1 hoặc x – 1 = –1.
⇔ x = 2 (loại vì x > 2) hoặc x = 0 (loại vì x > 2).
Vậy P không có giá trị nhỏ nhất khi x > 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.