Câu hỏi:
12/07/2024 6,254
Cho hàm số bậc nhất y = (m − 1)x + m − 3 (m ≠ 1) có đồ thị là đường thẳng d.
a) Khi m = 0, hãy vẽ đồ thị hàm số trên;
b) Tìm m để d cắt trục tung tại điểm có tung độ bằng 1;
c) Gọi A, B lần lượt là giao điểm của d với hai trục Ox, Oy. Tìm m để tam giác OAB cân.
Cho hàm số bậc nhất y = (m − 1)x + m − 3 (m ≠ 1) có đồ thị là đường thẳng d.
a) Khi m = 0, hãy vẽ đồ thị hàm số trên;
b) Tìm m để d cắt trục tung tại điểm có tung độ bằng 1;
c) Gọi A, B lần lượt là giao điểm của d với hai trục Ox, Oy. Tìm m để tam giác OAB cân.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Với m = 0 Þ y = − x − 3
Ta lập bảng:
x |
0 |
−3 |
y |
−3 |
0 |
Hàm số y = − x − 3 đi qua hai điểm M(0; −3) và N(−3; 0).
b) (d) cắt trục tung tại điểm có tung độ bằng 1
Þ 1 = (m − 1).0 + m − 3
Û 1 = m − 3
Û m = 4.
Vậy m = 4 thì (d) cắt trục tung tại điểm có tung độ bằng 1.
c) Vì A là giao điểm của (d) với trục Ox nên yA = 0.
Khi đó (m − 1)xA + m − 3 = 0
\[ \Leftrightarrow {x_A} = - \frac{{m - 3}}{{m - 1}}\]
\( \Rightarrow OA = \left| { - \frac{{m - 3}}{{m - 1}}} \right|\;\left( {m \ne 1} \right)\)
B là giao điểm của (d) vưới trục Oy nên xB = 0
Khi đó yB = (m − 1).0 + m − 3 = m − 3
\[ \Rightarrow OB = \left| {m - 3} \right|\]
Để tam giác OAB cân tại O thì OA = OB
\[ \Leftrightarrow \left| { - \frac{{m - 3}}{{m - 1}}} \right| = \left| {m - 3} \right|\]
+) TH1:
\[ - \frac{{m - 3}}{{m - 1}} = m - 3\]
\( \Rightarrow \left( {m - 3} \right)\left( {m - 1} \right) = - \left( {m - 3} \right)\)
\[ \Leftrightarrow \left( {m - 3} \right)\left( {m - 1} \right) + \left( {m - 3} \right) = 0\]
Û m(m − 3) = 0
\[ \Rightarrow \left[ \begin{array}{l}m = 0\;\left( {TM} \right)\\m = 3\;\left( {TM} \right)\end{array} \right.\]
+) TH2:
\[ - \frac{{m - 3}}{{m - 1}} = - \left( {m - 3} \right)\]
\( \Rightarrow \left( {m - 3} \right)\left( {m - 1} \right) = \left( {m - 3} \right)\)
\[ \Leftrightarrow \left( {m - 3} \right)\left( {m - 1} \right) - \left( {m - 3} \right) = 0\]
Û (m − 2)(m − 3) = 0
\[ \Rightarrow \left[ \begin{array}{l}m = 2\;\left( {TM} \right)\\m = 3\;\left( {TM} \right)\end{array} \right.\]
Vậy các giá trị của m thỏa mãn là m = 1; m = 2; m = 3.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).
Xét tứ giác ABOC có:
\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).
Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.
Hay A, B, O, C thuộc 1 đường tròn.
b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.
Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)
Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).
Suy ra ∆CBD vuông tại C hay DC ^ BC (2)
Từ (1), (2) Þ DC // OA.
c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)
Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];
\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).
Suy ra \(\widehat {ODE} = \widehat {BOA}\).
Xét ∆BOA và ∆ODE có:
\(\widehat {ODE} = \widehat {BOA}\) (cmt)
\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]
OB = OD = R
Þ ∆BOA = ∆ODE (g.c.g)
Þ AB = OE (hai cạnh tương ứng)
Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))
Suy ra OE = AC (4)
Từ (3) và (4) Þ OCEA là hình thang cân.
d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]
\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)
\(\widehat {OAB} = \widehat {SAO}\)
Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S
Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)
Suy ra SI ^ OA Þ KS ^ OA (5)
Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)
AI ^ KS suy ra KI = SI.
Mà OI ^ AI
Suy ra OKAS là hình bình hành (6)
Từ (5) và (6) suy ra AKOS là hình thoi.
Ta có ∆OAB vuông tại A có OA = 2OD = 2R
\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]
\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]
\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].
Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]
Lời giải
Lời giải
M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)
\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.