Câu hỏi:

12/07/2024 4,519

Cho đường tròn (O) bán kính R, đường kính AB, vẽ dây cung CD vuông góc với AB (CD không đi qua (O)), trên tia đối của BA lấy S, SC cắt đường tròn tại M thuộc cung nhỏ BC

a) Chứng minh ∆SMA ∆SBC.

b) Gọi H là giao điểm của MA và BC, K là giao điểm của MD và AB. Chứng minh tứ giác BMHK nội tiếp và HK // CD.

c) Chứng minh OK . OS = R2.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Xét ∆SMA và ∆SBC có:

\[\widehat S\] chung

\(\widehat {SAM} = \widehat {SCB}\) (Hai góc nội tiếp cùng chắn cung MB của (O))

Þ ∆SMA ∆SBC (g.g)

b) Do CD ^ AB (giả thiết)

Þ AB là đường trung trực của CD (mối liên hệ giữa đường kính và dây cung)

Þ AC = AD (tính chất đường trung trực)

 (hai dây bằng nhau căng hai cung bằng nhau)

\( \Rightarrow \widehat {AMD} = \widehat {ABC}\) (góc nội tiếp cùng chắn hai cung bằng nhau)

\( \Rightarrow \widehat {KBH} = \widehat {KMH}\).

Mà hai góc này cùng nhìn cạnh KH nên suy ra BMHK nội tiếp.

c) Kẻ đường kính MN

Xét ∆AON và ∆BOM có:

OA = OB = R

\(\widehat {AON} = \widehat {BOM}\)

ON = OM = R

Þ ∆AON = ∆BOM (c.g.c)

Þ AN = BM (hai cạnh tương ứng bằng nhau)

 (hai dây bằng nhau căng hai cung bằng nhau)

Ta có:

 (tính chất góc có đỉnh nằm ngoài đường tròn) (1)

 (tính chất góc nội tiếp)

Media VietJack (2)

Media VietJack (3)

Media VietJack (4)

Từ (1), (2), (3) và (4) suy ra \(\widehat {ASC} = \widehat {NMD}\) hay \[\widehat {OMK} = \widehat {OSM}\]

Xét ∆OKM và ∆OMS có:

\(\widehat {MOS}\) chung

\[\widehat {OMK} = \widehat {OSM}\] (cmt)

Þ ∆OKM ∆OMS (g.g)

\( \Rightarrow \frac{{OK}}{{OM}} = \frac{{OM}}{{OS}}\) (hai cạnh tương ứng tỉ lệ)

Þ OK.OS = OM2 = R2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack 

a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).

Xét tứ giác ABOC có:

\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).

Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.

Hay A, B, O, C thuộc 1 đường tròn.

b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.

Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)

Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).

Suy ra ∆CBD vuông tại C hay DC ^ BC (2)

Từ (1), (2) Þ DC // OA.

c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)

Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];

\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).

Suy ra \(\widehat {ODE} = \widehat {BOA}\).

Xét ∆BOA và ∆ODE có:

\(\widehat {ODE} = \widehat {BOA}\) (cmt)

\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]

OB = OD = R

Þ ∆BOA = ∆ODE (g.c.g)

Þ AB = OE (hai cạnh tương ứng)

Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))

Suy ra OE = AC (4)

Từ (3) và (4) Þ OCEA là hình thang cân.

d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]

\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)

\(\widehat {OAB} = \widehat {SAO}\)

Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S

Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)

Suy ra SI ^ OA Þ KS ^ OA (5)

Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)

AI ^ KS suy ra KI = SI.

Mà OI ^ AI

Suy ra OKAS là hình bình hành (6)

Từ (5) và (6) suy ra AKOS là hình thoi.

Ta có ∆OAB vuông tại A có OA = 2OD = 2R

\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]

\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]

\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].

Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]

Lời giải

Lời giải

M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)

\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP