Câu hỏi:
12/07/2024 2,926Cho đường tròn (O) bán kính R, đường kính AB, vẽ dây cung CD vuông góc với AB (CD không đi qua (O)), trên tia đối của BA lấy S, SC cắt đường tròn tại M thuộc cung nhỏ BC
a) Chứng minh ∆SMA ᔕ ∆SBC.
b) Gọi H là giao điểm của MA và BC, K là giao điểm của MD và AB. Chứng minh tứ giác BMHK nội tiếp và HK // CD.
c) Chứng minh OK . OS = R2.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆SMA và ∆SBC có:
\[\widehat S\] chung
\(\widehat {SAM} = \widehat {SCB}\) (Hai góc nội tiếp cùng chắn cung MB của (O))
Þ ∆SMA ᔕ ∆SBC (g.g)
b) Do CD ^ AB (giả thiết)
Þ AB là đường trung trực của CD (mối liên hệ giữa đường kính và dây cung)
Þ AC = AD (tính chất đường trung trực)
(hai dây bằng nhau căng hai cung bằng nhau)
\( \Rightarrow \widehat {AMD} = \widehat {ABC}\) (góc nội tiếp cùng chắn hai cung bằng nhau)
\( \Rightarrow \widehat {KBH} = \widehat {KMH}\).
Mà hai góc này cùng nhìn cạnh KH nên suy ra BMHK nội tiếp.
c) Kẻ đường kính MN
Xét ∆AON và ∆BOM có:
OA = OB = R
\(\widehat {AON} = \widehat {BOM}\)
ON = OM = R
Þ ∆AON = ∆BOM (c.g.c)
Þ AN = BM (hai cạnh tương ứng bằng nhau)
(hai dây bằng nhau căng hai cung bằng nhau)
Ta có:
(tính chất góc có đỉnh nằm ngoài đường tròn) (1)
(tính chất góc nội tiếp)
(2)
Mà (3)
(4)
Từ (1), (2), (3) và (4) suy ra \(\widehat {ASC} = \widehat {NMD}\) hay \[\widehat {OMK} = \widehat {OSM}\]
Xét ∆OKM và ∆OMS có:
\(\widehat {MOS}\) chung
\[\widehat {OMK} = \widehat {OSM}\] (cmt)
Þ ∆OKM ᔕ ∆OMS (g.g)
\( \Rightarrow \frac{{OK}}{{OM}} = \frac{{OM}}{{OS}}\) (hai cạnh tương ứng tỉ lệ)
Þ OK.OS = OM2 = R2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
a) Chứng minh: AMON là hình thoi.
b) Chứng minh: MN là tiếp tuyến của đường tròn.
c) Tính diện tích AMON.
Câu 7:
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:
a) BEFI là tứ giác nội tiếp đường tròn.
b) AE . AF = AC2.
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!