Câu hỏi:
12/07/2024 3,967Cho đường tròn (O) bán kính R, đường kính AB, vẽ dây cung CD vuông góc với AB (CD không đi qua (O)), trên tia đối của BA lấy S, SC cắt đường tròn tại M thuộc cung nhỏ BC
a) Chứng minh ∆SMA ᔕ ∆SBC.
b) Gọi H là giao điểm của MA và BC, K là giao điểm của MD và AB. Chứng minh tứ giác BMHK nội tiếp và HK // CD.
c) Chứng minh OK . OS = R2.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Xét ∆SMA và ∆SBC có:
\[\widehat S\] chung
\(\widehat {SAM} = \widehat {SCB}\) (Hai góc nội tiếp cùng chắn cung MB của (O))
Þ ∆SMA ᔕ ∆SBC (g.g)
b) Do CD ^ AB (giả thiết)
Þ AB là đường trung trực của CD (mối liên hệ giữa đường kính và dây cung)
Þ AC = AD (tính chất đường trung trực)
(hai dây bằng nhau căng hai cung bằng nhau)
\( \Rightarrow \widehat {AMD} = \widehat {ABC}\) (góc nội tiếp cùng chắn hai cung bằng nhau)
\( \Rightarrow \widehat {KBH} = \widehat {KMH}\).
Mà hai góc này cùng nhìn cạnh KH nên suy ra BMHK nội tiếp.
c) Kẻ đường kính MN
Xét ∆AON và ∆BOM có:
OA = OB = R
\(\widehat {AON} = \widehat {BOM}\)
ON = OM = R
Þ ∆AON = ∆BOM (c.g.c)
Þ AN = BM (hai cạnh tương ứng bằng nhau)
(hai dây bằng nhau căng hai cung bằng nhau)
Ta có:
(tính chất góc có đỉnh nằm ngoài đường tròn) (1)
(tính chất góc nội tiếp)
(2)
Mà (3)
(4)
Từ (1), (2), (3) và (4) suy ra \(\widehat {ASC} = \widehat {NMD}\) hay \[\widehat {OMK} = \widehat {OSM}\]
Xét ∆OKM và ∆OMS có:
\(\widehat {MOS}\) chung
\[\widehat {OMK} = \widehat {OSM}\] (cmt)
Þ ∆OKM ᔕ ∆OMS (g.g)
\( \Rightarrow \frac{{OK}}{{OM}} = \frac{{OM}}{{OS}}\) (hai cạnh tương ứng tỉ lệ)
Þ OK.OS = OM2 = R2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 2:
Câu 3:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 4:
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:
a) BEFI là tứ giác nội tiếp đường tròn.
b) AE . AF = AC2.
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.
Câu 5:
Câu 6:
Câu 7:
Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.
a) Chứng minh ∆HBA ᔕ ∆ABC.
b) Tính BC, AH, HC.
c) Chứng minh AH2 = HB . HC.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
148 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu từ đề thi Đại học có lời giải (P1)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận