Câu hỏi:

12/07/2024 3,056

Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.

a) Chứng minh ∆HBA ∆ABC.

b) Tính BC, AH, HC.

c) Chứng minh AH2 = HB . HC.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).

Tổng ôn Toán-lý hóa Văn-sử-đia Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack 

a) Xét ∆HBA ∆ABC có:

\[\widehat B\] chung

\(\widehat {AHB} = \widehat {BAC} = 90^\circ \)

Þ ∆HBA ∆ABC (g.g).

b) Áp dụng định lí Py-ta-go với ∆ABC vuông tại A nên ta có:

BC2 = AB2 + AC2

Þ BC2 = 62 + 82 = 100

Þ BC = 10 cm

∆HBA ∆ABC

\[ \Rightarrow \frac{{HA}}{{AC}} = \frac{{AB}}{{CB}} \Rightarrow \frac{{AH}}{8} = \frac{6}{{10}} \Rightarrow AH = 4,8\;cm\].

Áp dụng định lí Pytago vào ∆AHC vuông tại H nên ta có:

\[HC = \sqrt {A{C^2} - A{H^2}} = \sqrt {{8^2} - {{4,8}^2}} = 3,6\;(cm)\].

c) Xét ∆AHB và ∆CHA có:

\[\widehat {AHB} = \widehat {CHA} = 90^\circ \]

\[\widehat {BAH} = \widehat {ACH}\] (cùng phụ với \[\widehat {ABC}\])

Þ ∆AHB ∆CHA (g.g)

\[ \Rightarrow \frac{{AH}}{{CH}} = \frac{{HB}}{{HA}} \Rightarrow A{H^2} = HB.HC\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 36,358

Câu 2:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 28,490

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 17,646

Câu 4:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 12,733

Câu 5:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 12,732

Câu 6:

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

Xem đáp án » 12/07/2024 8,261

Câu 7:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b) AE . AF = AC2.

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.

Xem đáp án » 12/07/2024 7,987

Bình luận


Bình luận