Câu hỏi:
29/03/2023 131Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Lời giải
TXĐ: D = ℝ
\(2{x^2} + 3x + \sqrt {2{x^2} + 3x + 9} = 33\)
\( \Leftrightarrow \left( {2{x^2} + 3x + 9} \right) + \sqrt {2{x^2} + 3x + 9} - 42 = 0\)
\( \Leftrightarrow \left( {2{x^2} + 3x + 9} \right) - 6\sqrt {2{x^2} + 3x + 9} + 7\sqrt {2{x^2} + 3x + 9} - 42 = 0\)
\( \Leftrightarrow \sqrt {2{x^2} + 3x + 9} \left( {\sqrt {2{x^2} + 3x + 9} - 6} \right) + 7\left( {\sqrt {2{x^2} + 3x + 9} - 6} \right) = 0\)
\( \Leftrightarrow \left( {\sqrt {2{x^2} + 3x + 9} - 6} \right)\left( {\sqrt {2{x^2} + 3x + 9} + 7} \right) = 0\)
\( \Rightarrow \sqrt {2{x^2} + 3x + 9} = 6\) (Do \(\sqrt {2{x^2} + 3x + 9} + 7 > 0\))
Bình phương 2 vế ta được:
2x2 + 3x + 9 = 36
Û 2x2 + 3x − 27 = 0
Û 2x2 − 6x + 9x − 27 = 0
Û 2x(x − 3) + 9(x − 3) = 0
Û (x − 3)(2x + 9) = 0
\( \Leftrightarrow \left[ \begin{array}{l}x = 3\;\;\;\;\;\;(TM)\\x = - \frac{9}{2}\;\;\;(TM)\end{array} \right.\)
Vậy phương trình trên có hai nghiệm \({x_1} = 3;\;{x_2} = - \frac{9}{2}\).
Tích x1x2 bằng: \({x_1}{x_2} = 3.\left( { - \frac{9}{2}} \right) = - \frac{{27}}{2}\).
Vậy ta chọn đán án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.
a) Chứng minh: AMON là hình thoi.
b) Chứng minh: MN là tiếp tuyến của đường tròn.
c) Tính diện tích AMON.
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
về câu hỏi!