Câu hỏi:
12/07/2024 2,883Cho tam giác ABC vuông tại A, đường cao AH, AB = 6 cm, AC = 8 cm.
a) Tính BC, BH, HC, AH .
b) Kẻ phân giác AD. Tính BD, DC.
c) Tính diên tích tam giác AHD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) Vì ∆ABC vuông tại A nên ta có:
BC2 = AB2 + AC2
Þ BC2 = 62 + 82 = 100
Þ BC = 10 cm.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}}\)
\( \Leftrightarrow \frac{1}{{A{H^2}}} = \frac{1}{{{6^2}}} + \frac{1}{{{8^2}}} = \frac{{25}}{{576}}\)
\[ \Rightarrow AH = \frac{{24}}{5} = 4,8\;(cm)\].
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
AB2 = BA.BC
Û 62 = BH.10
\( \Leftrightarrow BH = \frac{{36}}{{10}} = 3,6\;(cm)\)
Þ HC = BC − BH = 10 − 3,6 = 6,4 (cm)
Vậy BC = 10 cm, BH = 3,6 cm, HC = 6,4 cm, AH = 4,8 cm.
b) Áp dụng tính chất đường phân giác ta có:
\(\frac{{BD}}{{CD}} = \frac{{AB}}{{AC}} = \frac{6}{8} = \frac{3}{4}\)
\( \Leftrightarrow \frac{{BD}}{3} = \frac{{CD}}{4} = \frac{{BD + CD}}{{3 + 4}} = \frac{{BC}}{7} = \frac{{10}}{7}\)
\( \Rightarrow BD = \frac{{10}}{7}\,.\,3 = \frac{{30}}{7}\;(cm)\) và \(CD = \frac{{10}}{7}\,.\,4 = \frac{{40}}{7}\;(cm)\).
c) \[HD = BD - BH = \frac{{30}}{7} - 3,6 = \frac{{24}}{{35}}\;\,\,(cm)\].
Diện tích tam giác AHD là:
\[{S_{AHD}} = \frac{1}{2}AH\,.\,HD = \frac{1}{2}\,.\,4,8\,.\,\frac{{24}}{{35}} = \frac{{288}}{{175}}\;\,\,\left( {c{m^2}} \right)\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho hàm số bậc nhất y = (m − 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).
a) Vẽ đồ thị khi m = 2.
b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
về câu hỏi!