Câu hỏi:
29/03/2023 440Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số g(x) = x2[f (x − 1)]4 là:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
Ta có:
g(x) = x2[f (x − 1)]4
Þ g '(x) = 2x[f (x − 1)]4 + 4x2f '(x − 1)[f (x − 1)]3
Û g '(x) = 2x[f (x − 1)]3[f (x − 1) + 2xf '(x − 1)] = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\f\left( {x - 1} \right) = 0\\f\left( {x - 1} \right) + 2xf'\left( {x - 1} \right) = 0\end{array} \right.\]
Đặt t = x − 1 Þ x = t + 1
Xét phương trình f (x − 1) = 0 Û f (t) = 0
Dựa vào BBT ta thấy phương trình f (t) = 0 có 4 nghiệm phân biệt khác 1 nên phương trình f (x − 1) = 0 có 4 nghiệm phân biệt khác 0.
Xét phương trình f (x − 1) + 2xf '(x − 1) = 0
Þ f (t) + 2(t + 1)f '(t) = 0 (*)
Dựa vào BBT ta thấy:
f (x) là hàm bậc bốn trùng phương, đặt f (x) = ax4 + bx2 + c (a ≠ 0)
Đồ thị hàm số đi qua 3 điểm (−1; 3), (0; −1), (1; 3) và có ba điểm cực trị x = 0, x = ±1 nên ta có:
\[\left\{ \begin{array}{l}c = - 1\\a + b + c = 3\\f'\left( 1 \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = - 1\\a + b + c = 3\\4a + 2b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 4\\b = 8\\c = - 1\end{array} \right.\]
Þ f (x) = −4x4 + 8x2 − 1 Þ f '(x) = −16x3 + 16x.
Thay vào (*) ta có:
−4t4 + 8t2 − 1 + 2(t + 1)( −16t3 + 16t) = 0
Û −4t4 + 8t2 − 1 − 32t4 + 32t2 − 32t3 + 32t = 0
Û −36t4 − 32t3 + 40t2 + 32t − 1 = 0
Xét hàm số h (t) = −36t4 − 32t3 + 40t2 + 32t − 1 ta có:
h '(t) = − 144t3 − 96t2 + 80t + 32
Ta có: \[h'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{2}{3}\\t = \frac{{ - 1}}{3}\\t = - 1\end{array} \right.\].
Ta có BBT:
Dựa vào BBT ta thấy phương trình h (t) = 0 có 4 nghiệm phân biệt khác 1
Þ Phương trình f (x − 1) − 2xf '(x − 1) = 0 có 4 nghiệm phân biệt khác 0.
Do đó, phương trình g '(x) = 0 có tất cả 9 nghiệm phân biệt.
Vậy hàm số g(x) = x2[f (x − 1)]4 có tất cả 9 điểm cực trị.CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho hàm số bậc nhất y = (m − 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).
a) Vẽ đồ thị khi m = 2.
b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
về câu hỏi!