Câu hỏi:

29/03/2023 482

Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Media VietJack

Số điểm cực trị của hàm số g(x) = x2[f (x 1)]4 là:

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có:

g(x) = x2[f (x 1)]4

Þ g '(x) = 2x[f (x 1)]4 + 4x2f '(x − 1)[f (x 1)]3

Û g '(x) = 2x[f (x 1)]3[f (x 1) + 2xf '(x − 1)] = 0

\[ \Leftrightarrow \left[ \begin{array}{l}x = 0\\f\left( {x - 1} \right) = 0\\f\left( {x - 1} \right) + 2xf'\left( {x - 1} \right) = 0\end{array} \right.\]

Đặt t = x − 1 Þ x = t + 1

Xét phương trình f (x − 1) = 0 Û f (t) = 0

Dựa vào BBT ta thấy phương trình f (t) = 0 có 4 nghiệm phân biệt khác 1 nên phương trình f (x − 1) = 0 có 4 nghiệm phân biệt khác 0.

Xét phương trình f (x 1) + 2xf '(x − 1) = 0

Þ f (t) + 2(t + 1)f '(t) = 0 (*)

Dựa vào BBT ta thấy:

f (x) là hàm bậc bốn trùng phương, đặt f (x) = ax4 + bx2 + c (a ≠ 0)

Đồ thị hàm số đi qua 3 điểm (−1; 3), (0; −1), (1; 3) và có ba điểm cực trị x = 0, x = ±1 nên ta có:

\[\left\{ \begin{array}{l}c = - 1\\a + b + c = 3\\f'\left( 1 \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}c = - 1\\a + b + c = 3\\4a + 2b = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 4\\b = 8\\c = - 1\end{array} \right.\]

Þ f (x) = −4x4 + 8x2 − 1 Þ f '(x) = −16x3 + 16x.

Thay vào (*) ta có:

−4t4 + 8t2 − 1 + 2(t + 1)( −16t3 + 16t) = 0

Û −4t4 + 8t2 − 1 − 32t4 + 32t2 − 32t3 + 32t = 0

Û −36t4 − 32t3 + 40t2 + 32t − 1 = 0

Xét hàm số h (t) = −36t4 − 32t3 + 40t2 + 32t − 1 ta có:

h '(t) = − 144t3 − 96t2 + 80t + 32

Ta có: \[h'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = \frac{2}{3}\\t = \frac{{ - 1}}{3}\\t = - 1\end{array} \right.\].

Ta có BBT:

Media VietJack

Dựa vào BBT ta thấy phương trình h (t) = 0 có 4 nghiệm phân biệt khác 1

Þ Phương trình f (x − 1) − 2xf '(x − 1) = 0 có 4 nghiệm phân biệt khác 0.

Do đó, phương trình g '(x) = 0 có tất cả 9 nghiệm phân biệt.

Vậy hàm số g(x) = x2[f (x 1)]4 có tất cả 9 điểm cực trị.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 36,087

Câu 2:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 27,165

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 17,484

Câu 4:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 12,230

Câu 5:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 10,751

Câu 6:

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

Xem đáp án » 12/07/2024 8,046

Câu 7:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD // AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.

d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.

Chứng minh: AM.AD = AH.AO.

e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).

Xem đáp án » 12/07/2024 7,246

Bình luận


Bình luận