Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:

Số điểm cực trị của hàm số g(x) = x4[f (x − 1)]2 là:
Cho hàm số bậc bốn f (x) có bảng biến thiên như sau:
Số điểm cực trị của hàm số g(x) = x4[f (x − 1)]2 là:
Quảng cáo
Trả lời:
Lời giải
Ta có: f (x) = 4x4 − 8x2 + 3 Þ f '(x) = 16x3 − 16x = 16x(x2 − 1)
Ta có g '(x) = 2x3f (x − 1)[2f (x − 1) + xf '(x − 1)]
\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\,\left( 1 \right)\\f\left( {x - 1} \right) = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 \right)\\2f\left( {x - 1} \right) + xf'\left( {x - 1} \right) = 0\;\;\left( 3 \right)\end{array} \right.\)
Phương trình (1) có x = 0 (nghiệm bội ba).
Phương trình (2) có cùng số nghiệm với phương trình y = f (x) nên (2) có 4 nghiệm đơn.
Phương trình (3) có cùng số nghiệm với phương trình:
2f (x) + (x + 1)f '(x) = 0
Û 2(4x4 − 8x2 + 3) + 16x(x + 1)(x2 − 1) = 0
Û 24x4 + 16x3 − 32x2 − 16x + 6 = 0 có 4 nghiệm phân biệt.
Dễ thấy 9 nghiệm trên phân biệt nên hàm số g (x) = 0 có tất cả 9 điểm cực trị.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).
Xét tứ giác ABOC có:
\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).
Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.
Hay A, B, O, C thuộc 1 đường tròn.
b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.
Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)
Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).
Suy ra ∆CBD vuông tại C hay DC ^ BC (2)
Từ (1), (2) Þ DC // OA.
c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)
Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];
\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).
Suy ra \(\widehat {ODE} = \widehat {BOA}\).
Xét ∆BOA và ∆ODE có:
\(\widehat {ODE} = \widehat {BOA}\) (cmt)
\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]
OB = OD = R
Þ ∆BOA = ∆ODE (g.c.g)
Þ AB = OE (hai cạnh tương ứng)
Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))
Suy ra OE = AC (4)
Từ (3) và (4) Þ OCEA là hình thang cân.
d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]
\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)
\(\widehat {OAB} = \widehat {SAO}\)
Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S
Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)
Suy ra SI ^ OA Þ KS ^ OA (5)
Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)
AI ^ KS suy ra KI = SI.
Mà OI ^ AI
Suy ra OKAS là hình bình hành (6)
Từ (5) và (6) suy ra AKOS là hình thoi.
Ta có ∆OAB vuông tại A có OA = 2OD = 2R
\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]
\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]
\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].
Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]
Lời giải
Lời giải
M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)
\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)
\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.