Câu hỏi:
29/03/2023 775Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
y = x3 − 3mx2 + 9x + 1 Þ y' = 3x2 − 6mx + 9.
Phương trình hoành độ giao điểm của đồ thị (Cm) và đường thẳng (dm) là:
x3 − 3mx2 + 9x + 1 = x + 10 − 3m
Û x3 − 3mx2 + 8x + 3m − 9 = 0
Û (x3 + 8x − 9) − (3mx2 − 3m) = 0
Û (x − 1)(x2 + x + 9) − 3m(x − 1)(x + 1) = 0
Û (x − 1)[x2 + (1 − 3m)x + 9 − 3m] = 0
\[ \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^2} + \left( {1 - 3m} \right)x + 9 - 3m = 0\;\left( * \right)\end{array} \right.\]
Cho A là điểm có hoành độ x1 = 1.
Suy ra hệ số góc tiếp tuyến của (Cm) tại A là k1 = 3.12 − 6m.1 + 9 = 12 − 6m
Để (Cm) cắt đường thẳng (dm) tại 3 điểm phân biệt thì phương trình (*) phải có 2 nghiệm phân biệt và khác 1.
\( \Rightarrow \left\{ \begin{array}{l}\Delta = {\left( {1 - 3m} \right)^2} - 4\left( {9 - 3m} \right) > 0\\{1^2} + \left( {1 - 3m} \right).1 + 9 - 3m \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}9{m^2} + 6m - 35 > 0\\11 - 6m \ne 0\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > \frac{5}{3}\\m < - \frac{7}{3}\end{array} \right.\\m \ne \frac{{11}}{6}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}m > \frac{5}{3}\\m \ne \frac{{11}}{6}\end{array} \right.\\m < - \frac{7}{3}\end{array} \right.\)
Hoành độ của B và C là hai nghiệm của phương trình (*) với theo Vi-ét:
\(\left\{ \begin{array}{l}{x_2} + {x_3} = 3m - 1\\{x_2}{x_3} = 9 - 3m\end{array} \right.\).
Hệ số góc tiếp tuyến của (Cm) tại B, C lần lượt là:
k2 = 3x22 − 6mx2 + 9 và k3 = 3x32 − 6mx3 + 9
Để k1 + k2 + k3 > 15
Û (12 − 6m) + (3x22 − 6mx2 + 9) + (3x32 − 6mx3 + 9) > 15
Û 3(x22 + x32) − 6m(x2 + x3) + 30 − 6m > 15
Û 3[(x2 + x3)2 − 2x2x3] − 6m(x2 + x3) + 30 − 6m > 15
Û 3[(3m − 1)2 − 2(9 − 3m)] − 6m(3m − 1) + 30 − 6m > 15
Û 3(9m2 − 6m + 1 − 18 + 6m) − 18m2 + 6m + 30 − 6m > 15
Û 9m2 > 36 Û m2 > 4
\( \Rightarrow \left[ \begin{array}{l}m > 2\\m < - 2\end{array} \right.\).
Kết hợp các điều kiện của m suy ra \(m \in \left( { - \infty ;\; - \frac{7}{3}} \right) \cup \left( {2;\; + \infty } \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho hàm số bậc nhất y = (m − 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).
a) Vẽ đồ thị khi m = 2.
b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
về câu hỏi!