Câu hỏi:
12/07/2024 9,216Cho hàm số bậc nhất y = (m − 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).
a) Vẽ đồ thị khi m = 2.
b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Lời giải
a) Với m = 2 Þ y = x + 4 (d).
Với x = 0 Þ y = 4. Suy ra đồ thị đi qua điểm có tọa độ (0; 4).
Với y = 0 Þ x = −4. Suy ra đồ thị đi qua điểm có tọa độ (−4; 0).
b) Để (d) song song với đồ thị hàm số y = −3x + 2 (d1)
Þ m − 1 = −3 Û m = −2
Vậy m = −2 là giá của m thỏa mãn.
c) Đường thẳng (d) cắt trục Ox tại điểm có hoành độ \(x = \frac{4}{{1 - m}}\)
\( \Rightarrow A\,\left( {\frac{4}{{1 - m}};\;0} \right)\) Þ \(OA = \left| {\frac{4}{{1 - m}}} \right|\).
Đường thẳng (d) cắt trục Oy tại điểm có tung độ y = 4
Þ B(0; 4) Þ OB = 4.
Khi đó diện tích của tam giác OAB là:
\[{S_{OAB}} = \frac{1}{2}OA.OB = \frac{1}{2}.\left| {\frac{4}{{1 - m}}} \right|.4 = \frac{8}{{\left| {1 - m} \right|}} = 2\]
Û |1 − m| = 4
\( \Rightarrow \left[ \begin{array}{l}1 - m = 4\\1 - m = - 4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}m = - 3\\m = 5\end{array} \right.\).
Vậy m = −3 và m = 5 là giá trị cần tìm thỏa mãn của tham số m.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
Đã bán 1,5k
Đã bán 1,4k
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 2:
Câu 3:
Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:
a) BEFI là tứ giác nội tiếp đường tròn.
b) AE . AF = AC2.
c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.
Câu 4:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 5:
Câu 6:
Câu 7:
Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.
a) Chứng minh ∆HBA ᔕ ∆ABC.
b) Tính BC, AH, HC.
c) Chứng minh AH2 = HB . HC.
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
80 câu Trắc nghiệm Tích phân có đáp án (Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
15 câu Trắc nghiệm Số phức có đáp án (Vận dụng)
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận