Câu hỏi:

12/07/2024 1,185

Cho phương trình: x2mx + m − 1 = 0 (1). Tìm m để phương trình (1) có hai nghiệm phân biệt x1 và x2 thoả mãn: x12 + 3x1x2 = 3x2 + 3m + 16.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

• Xét phương trình: x2mx + m − 1 = 0 (1)

Ta có: ∆ = m2 − 4(m − 1) = m2 − 4m + 4 = (m − 2)2

Để phương trình có hai nghiệm phân biệt thì ∆ > 0

Hay (m − 2)2 > 0 Û m ≠ 2

Theo hệ thức Vi-ét ta có:

\(\left\{ \begin{array}{l}{x_1} + {x_2} = m\\{x_1}{x_2} = m - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\\left( {m - {x_2}} \right){x_2} = m - 1\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\{x_2}^2 - m{x_2} + m - 1 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\\left( {{x_2} - 1} \right)\left( {{x_2} + 1} \right) - m\left( {{x_2} - 1} \right) = 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\\left( {{x_2} - 1} \right)\left( {{x_2} + 1 - m} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_1} = m - {x_2}\\\left[ \begin{array}{l}{x_2} = 1\\{x_2} = m - 1\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}{x_1} = m - 1\\{x_2} = 1\end{array} \right.\\\left\{ \begin{array}{l}{x_1} = 1\\{x_2} = m - 1\end{array} \right.\end{array} \right.\)

• Xét phương trình: x12 + 3x1x2 = 3x2 + 3m + 16 (2)

+) TH1: \(\left\{ \begin{array}{l}{x_1} = m - 1\\{x_2} = 1\end{array} \right.\)

Khi đó phương trình (2) trở thành:

(2) Û (m − 1)2 + 3(m − 1) = 3 + 3m + 16

Û m2 − 2m − 21 = 0

\( \Leftrightarrow \left[ \begin{array}{l}m = 1 + \sqrt {22} \\m = 1 - \sqrt {22} \end{array} \right.\)

+) TH2: \(\left\{ \begin{array}{l}{x_1} = 1\\{x_2} = m - 1\end{array} \right.\)

Khi đó phương trình (2) trở thành:

(2) Û 12 + 3(m − 1) = 3(m − 1) + 3m + 16

Û 3m + 15 = 0

Û m = −5.

Vậy \[m = 1 \pm \sqrt {22} \] và m = −5 là các giá trị của m thỏa mãn.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 41,381

Câu 2:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 37,063

Câu 3:

Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O). Lấy điểm E trên cung nhỏ BC (E khác B và C), AE cắt CD tại F. Chứng minh:

a) BEFI là tứ giác nội tiếp đường tròn.

b) AE . AF = AC2.

c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định.

Xem đáp án » 12/07/2024 27,858

Câu 4:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 22,756

Câu 5:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 18,237

Câu 6:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 14,715

Câu 7:

Cho ∆ABC vuông tại A vẽ đường cao AH có AB = 6 cm, AC = 8 cm.

a) Chứng minh ∆HBA ∆ABC.

b) Tính BC, AH, HC.

c) Chứng minh AH2 = HB . HC.

Xem đáp án » 12/07/2024 11,928
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay