Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OA = OC và . Chứng minh tứ giác ABCD là hình bình hành.
                                    
                                                                                                                        Cho tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại O thoả mãn OA = OC và . Chứng minh tứ giác ABCD là hình bình hành.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    
• Xét ΔOAD và ΔOCB có:
(giả thiết);
OA = OC (giả thiết);
(đối đỉnh)
Do đó ΔOAD = ΔOCB (g.c.g)
Suy ra OD = OB (hai cạnh tương ứng)
• Xét tứ giác ABCD có hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường
Do đó ABCD là hình bình hành.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét tứ giác ABCD có: hai đường chéo AC và BD cắt nhau tại trung điểm O của mỗi đường nên là hình bình hành.
Do đó AB = CD = 100 (m).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo