Câu hỏi:

29/03/2023 799

Phương trình \({x^3} - 12x + m - 2 = 0\) có 3 nghiệm phân biệt với m:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

\({x^3} - 12x + m - 2 = 0\)

Û \({x^3} - 12x - 2 = - m\) (1)

Phương trình (1) có 3 nghiệm phân biệt

Þ Đường thẳng y = −m cắt đồ thị hàm số y = x3 − 12x − 2 tại 3 điểm phân biệt.

Xét hàm số f (x) = x3 − 12x − 2 Þ f '(x) = 3x2 − 12 = 0

Û x = ± 2.

Ta có BBT của hàm số f (x) = x3 − 12x − 2 với tập xác định là ℝ

Media VietJack

Dựa vào BBT ta có: −18 < −m < 14 Û −14 < m < 18.

Vậy ta chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack 

a) Ta có AB và AC là tiếp tuyến của (O) \( \Rightarrow \widehat {ABO} = \widehat {ACO} = 90^\circ \).

Xét tứ giác ABOC có:

\(\widehat {ABO} + \widehat {ACO} = 90^\circ + 90^\circ = 180^\circ \).

Suy ra tứ giác ABOC là tứ giác nội tiếp đường tròn.

Hay A, B, O, C thuộc 1 đường tròn.

b) Ta có: AB và AC là tiếp tuyến của (O) Þ AB = AC.

Mà OB = OC = R Þ OA là đường trung trực của BC hay OA ^ BC (1)

Xét ∆CBD nội tiếp (O) có BD là đường kính của (O).

Suy ra ∆CBD vuông tại C hay DC ^ BC (2)

Từ (1), (2) Þ DC // OA.

c) Ta có: DC // OA Þ CE // OA Þ OCEA là hình thang (3)

Ta có: \[\widehat {ODE} + \widehat {OBC} = 90^\circ \];

\(\widehat {OBC} + \widehat {BOA} = 90^\circ \).

Suy ra \(\widehat {ODE} = \widehat {BOA}\).

Xét ∆BOA và ∆ODE có:

\(\widehat {ODE} = \widehat {BOA}\) (cmt)

\[\widehat {DOE} = \widehat {OBA} = 90^\circ \]

OB = OD = R

Þ ∆BOA = ∆ODE (g.c.g)

Þ AB = OE (hai cạnh tương ứng)

Mà AB = AC (AB và AC đều là tiếp tuyến chung của (O))

Suy ra OE = AC (4)

Từ (3) và (4) Þ OCEA là hình thang cân.

d) Ta có: \[\widehat {SOI} + \widehat {AOB} = 90^\circ \]

\(\widehat {AOB} + \widehat {OAB} = 90^\circ \)

\(\widehat {OAB} = \widehat {SAO}\)

Suy ra \(\widehat {SOA} = \widehat {SAO}\) Þ ∆SOA cân tại S

Lại có SI là đường trung tuyến \(\left( {OI = IA = \frac{{OA}}{2} = R} \right)\)

Suy ra SI ^ OA Þ KS ^ OA (5)

Ta có ∆KAS có \(\widehat {KAI} = \widehat {SAI}\)

AI ^ KS suy ra KI = SI.

Mà OI ^ AI

Suy ra OKAS là hình bình hành (6)

Từ (5) và (6) suy ra AKOS là hình thoi.

Ta có ∆OAB vuông tại A có OA = 2OD = 2R

\[ \Rightarrow \widehat {OAB} = 30^\circ \Rightarrow \tan \widehat {OAB} = \tan 30^\circ = \frac{{KI}}{{AI}}\]

\[ \Rightarrow KI = \tan 30^\circ .AI = \frac{{\sqrt 3 }}{3}R\]

\[ \Rightarrow KS = \frac{{2\sqrt 3 }}{3}R\].

Vậy \[SAKOS = \frac{{OA.SK}}{2} = \frac{{2R.\frac{{2\sqrt 3 }}{3}R}}{2} = \frac{{2\sqrt 3 }}{3}{R^2}.\]

Lời giải

Lời giải

M là điểm nằm trên đoạn AB và \(AM = \frac{1}{5}AB\)

\( \Rightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{5}\overrightarrow {AM} + \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \frac{4}{5}\overrightarrow {AM} = \frac{1}{5}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {AM} = \frac{1}{4}\overrightarrow {MB} \)

\( \Leftrightarrow \overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP