Câu hỏi:

12/07/2024 1,393

Cho hình thang cân ABCD. Đáy nhỏ AB bằng cạnh bên BC và đường chéo AC vuông góc với cạnh bên AD.

a) Tính các góc của hình thang cân.

b) Chứng minh rằng trong hình thang cân đó đáy lớn gấp đôi đáy nhỏ.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) ABCD là hình thang cân \[ \Rightarrow \widehat D = \widehat C;\;\widehat A = \widehat B\].

Xét ∆ACD có: \[\widehat {ADC} + \widehat {ACD} = 180^\circ - \widehat {DAC} = 180^\circ - 90^\circ = 90^\circ \]

Xét ∆ABC có: AB = BC Þ ∆ABC cân tại B

\[ \Rightarrow \widehat {BAC} = \widehat {BCA}\]

Ta có: \[\widehat {DAB} = \widehat {DAC} + \widehat {CAB}\]

\[ = 90^\circ + \widehat {CAB} = \widehat {ADC} + \widehat {ACD} + \widehat {ACB}\]

\[ = \widehat {BCD} + \widehat {BCD} = 2\widehat {BCD}\]

Mà \(\widehat {DAB} + \widehat {BCD} = 180^\circ \Rightarrow 2\widehat {BCD} + \widehat {BCD} = 180^\circ \)

\( \Rightarrow 3\widehat {BCD} = 180^\circ \Rightarrow \widehat {BCD} = 60^\circ \)

\[ \Rightarrow \widehat C = \widehat D = 60^\circ \]

\[ \Rightarrow \widehat A = \widehat B = 180^\circ - \widehat C = 180^\circ - 60^\circ = 120^\circ \]

b) Xét ∆ADC có \(\widehat D = 60^\circ \Rightarrow \widehat {ACD} = 90^\circ - 60^\circ = 30^\circ \)

Trong một tam giác vuông, cạnh đối diện với góc 30° có độ dài bằng nửa cạnh huyền

Suy ra \(AD = \frac{1}{2}DC\).

Mà \(AD = BC = AB \Rightarrow AB = \frac{1}{2}DC\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đoạn thẳng AB và M là điểm nằm trên đoạn AB sao cho \(AM = \frac{1}{5}AB\). Tìm k trong \(\overrightarrow {MA} = k\overrightarrow {MB} \).

Xem đáp án » 12/07/2024 36,087

Câu 2:

Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.

a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.

b) Chứng minh rằng: DC // OA.

c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.

d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.

Xem đáp án » 12/07/2024 27,165

Câu 3:

Cho tam giác ABC có AB = 4, AC = 5, BC = 6. Tính \(\cos \left( {\widehat B + \widehat C} \right)\).

Xem đáp án » 12/07/2024 17,484

Câu 4:

Tam giác ABC có hai đường trung tuyến BM, CN vuông góc với nhau và có BC = 3, góc \(\widehat {BAC}\) = 30°. Tính diện tích tam giác ABC.

Xem đáp án » 12/07/2024 12,230

Câu 5:

Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).

a) Chứng minh rằng: OA ^ BC và OA // BD.

b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.

Xem đáp án » 12/07/2024 10,751

Câu 6:

Cho đường tròn (O; R) và điểm A cách O một khoảng 2R. Từ A vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Đường thảng vuông góc với B tại O cắt AC tại N. Đường thẳng vuông góc với OC tại O cắt AB tại M.

a) Chứng minh: AMON là hình thoi.

b) Chứng minh: MN là tiếp tuyến của đường tròn.

c) Tính diện tích AMON.

Xem đáp án » 12/07/2024 8,046

Câu 7:

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD // AO.

c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.

d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.

Chứng minh: AM.AD = AH.AO.

e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).

Xem đáp án » 12/07/2024 7,246

Bình luận


Bình luận