Câu hỏi:
12/07/2024 1,655Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Lời giải
a) AB là đường tiếp tuyến của đường tròn (O)
Þ OB ^ BA Þ ∆OBA vuông tại B.
Ta có: AB ^ OB (1)
OK ^ OB (2)
Từ (1) và (2) suy ra AB // OK
Þ \(\widehat {{O_1}} = \widehat {{A_2}}\) (so le trong).
Mà \(\widehat {{A_1}} = \widehat {{A_2}}\) (Tính chất hai tiếp tuyến cắt nhau)
\( \Rightarrow \widehat {{O_1}} = \widehat {{A_1}}\).
Vậy ∆OKA cân tại K.
b) Ta có: KM và (O) có điểm chung là I (3)
Mặt khác: OI = R, OA = 2R Þ IA = R
Þ KI là trung tuyến của ∆OKA
Mà ∆OKA cân tại K (cmt)
Þ KI ^ OA hay KM ^ OI (4)
Từ (3) và (4) Þ KM là tiếp tuyến của (O).
c) ∆AMK cân tại A (AI vừa là đường cao vừa là đường phân giác)
Þ AM = AK
\[\sin \widehat {{A_2}} = \frac{{OB}}{{OA}} = \frac{1}{2} \Rightarrow \widehat {{A_2}} = 30^\circ \Rightarrow \widehat {MAK} = 60^\circ \].
Khi đó, ∆AMK là tam giác đều \( \Rightarrow AI = \frac{{MK\sqrt 3 }}{2} \Rightarrow MK = \frac{{2R}}{{\sqrt 3 }}\).
Do đó, chu vi ∆AMK là: \(3MK = 3.\frac{{2R}}{{\sqrt 3 }} = 2R\sqrt 3 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Cho đường tròn (O; R) và một điểm A sao cho OA = 2R, vẽ các tiếp tuyến AB, AC với (O; R), B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh rằng: DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh rằng OCEA là hình thang cân.
d) Gọi I là giao điểm của đoạn OA và (O), K là giao điểm của tia SI và AB. Tính theo R diện tích tứ giác AKOS.
Câu 3:
Câu 4:
Câu 5:
Cho điểm A nằm ngoài đường tròn (O; R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (B, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ^ BC và OA // BD.
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE.AD = AH.AO.
Câu 6:
Cho hàm số bậc nhất y = (m − 1)x + 4 có đồ thị là đường thẳng (d) (m là tham số và m ≠ 1).
a) Vẽ đồ thị khi m = 2.
b) Với giá trị nào của m thì đường thẳng (d) song song với đường thẳng y = −3x + 2 (d1).
c) Tìm m để đường thẳng (d) cắt trục Ox, Oy lần lượt tại hai điểm A, B sao cho diện tích tam giác OAB bằng 2.
Câu 7:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
a) Chứng minh rằng OA vuông góc với BC.
b) Vẽ đường kính CD. Chứng minh rằng BD // AO.
c) Tính độ dài các cạnh của tam giác ABC, biết OB = 2 cm; OA = 4 cm.
d) Đường thẳng AD cắt đường tròn (O) tại điểm thứ hai là M.
Chứng minh: AM.AD = AH.AO.
e) Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại E. Chứng minh ED là tiếp tuyến của đường tròn (O).
về câu hỏi!