Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
                                    
                                                                                                                        Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    
Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Do đó AC = 2OA, BD = 2OB.
Ta có: AC2 + BD2 = (2OA)2 + (2OB)2 = 4OA2 + 4OB2 = 4(OA2 + OB2).
Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:
AB2 = OA2 + OB2
Suy ra AC2 + BD2 = 4(OA2 + OB2) = 4AB2.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử một lưới mắt cáo được mô tả bởi hình thoi ABCD như hình vẽ trên.
Khi đó AC = 90 mm, BD = 45 mm.
Do ABCD là hình thoi nên hai đường chéo AC và BD vuông góc với nhau tại trung điểm O của mỗi đường.
Suy ra ; .
Xét ΔOAB vuông tại O, theo định lí Pythagore ta có:
AB2 = OA2 + OB2 = 452 + 22,52 = 2 025 + 506,25 = 2531,25
Suy ra .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo